1. Borlongan CV. Concise review: stem cell therapy for stroke patients: are we there yet?
Stem Cells Transl Med 2019;8:983-988.
2. Banerjee S, Bentley P, Hamady M, Marley S, Davis J, Shlebak A, et al. Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke.
Stem Cells Transl Med 2014;3:1322-1330.
3. Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr, Alderman S, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke.
Ann Neurol 2011;70:59-69.
4. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial.
Stroke 2014;45:3618-3624.
5. Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial.
Lancet Neurol 2017;16:360-368.
6. Krause M, Phan TG, Ma H, Sobey CG, Lim R. Cell-based therapies for stroke: are we there yet?
Front Neurol 2019;10:656.
7. Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation.
Am J Transl Res 2019;11:780-792.
8. Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke.
Microvasc Res 2019;123:74-80.
9. Levy ML, Crawford JR, Dib N, Verkh L, Tankovich N, Cramer SC. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke.
Stroke 2019;50:2835-2841.
10. Gong B, Dong Y, He C, Jiang W, Shan Y, Zhou BY, et al. Intravenous transplants of human adipose-derived stem cell protect the rat brain from ischemia-induced damage.
J Stroke Cerebrovasc Dis 2019;28:595-603.
11. Mangin G, Kubis N. Cell therapy for ischemic stroke: how to turn a promising preclinical research into a successful clinical story.
Stem Cell Rev Rep 2019;15:176-193.
12. Spiliopoulos S, Festas G, Reppas L, Brountzos E. Intra-arterial administration of cell-based biological agents for ischemic stroke therapy.
Expert Opin Biol Ther 2019;19:249-259.
13. Vahidy FS, Haque ME, Rahbar MH, Zhu H, Rowan P, Aisiku IP, et al. Intravenous bone marrow mononuclear cells for acute ischemic stroke: safety, feasibility, and effect size from a phase I clinical trial.
Stem Cells 2019;37:1481-1491.
14. Yu SP, Tung JK, Wei ZZ, Chen D, Berglund K, Zhong W, et al. Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke.
J Neurosci 2019;39:6571-6594.
15. Zhang Y, Ma L, Su Y, Su L, Lan X, Wu D, et al. Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro.
Brain Res 2019;1725:146432.
16. Wang T, Tang W, Sun S, Xu T, Wang H, Guan J, et al. Intravenous infusion of bone marrow mesenchymal stem cells improves brain function after resuscitation from cardiac arrest.
Crit Care Med 2008;36(11 Suppl):S486-S491.
18. Tang X, Chen F, Lin Q, You Y, Ke J, Zhao S. Bone marrow mesenchymal stem cells repair the hippocampal neurons and increase the expression of IGF-1 after cardiac arrest in rats.
Exp Ther Med 2017;14:4312-4320.
19. Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion.
World J Stem Cells 2015;7:11-26.
20. Jiang L, Jones S, Jia X. Stem cell transplantation for peripheral nerve regeneration: current options and opportunities.
Int J Mol Sci 2017;18:94.
21. Yang Y, Ye G, Zhang YL, He HW, Yu BQ, Hong YM, et al. Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells.
Neural Regen Res 2020;15:464-472.
23. Nalamolu KR, Venkatesh I, Mohandass A, Klopfenstein JD, Pinson DM, Wang DZ, et al. Exosomes treatment mitigates ischemic brain damage but does not improve post-stroke neurological outcome.
Cell Physiol Biochem 2019;52:1280-1291.
24. Qing L, Chen H, Tang J, Jia X. Exosomes and their microRNA cargo: new players in peripheral nerve regeneration.
Neurorehabil Neural Repair 2018;32:765-776.
26. Jiang X, Fitch S, Wang C, Wilson C, Li J, Grant GA, et al. Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery.
Proc Natl Acad Sci U S A 2016;113:13857-13862.
27. Li G, Bonamici N, Dey M, Lesniak MS, Balyasnikova IV. Intranasal delivery of stem cell-based therapies for the treatment of brain malignancies.
Expert Opin Drug Deliv 2018;15:163-172.
28. Mangraviti A, Tzeng SY, Gullotti D, Kozielski KL, Kim JE, Seng M, et al. Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival.
Biomaterials 2016;100:53-66.
29. Zhang S, Lam KK, Wan JH, Yip CW, Liu HK, Lau QM, et al. Dietary phytochemical approaches to stem cell regulation.
J Funct Foods 2020;66:103822.
30. Baker CL, Pera MF. Capturing totipotent stem cells.
Cell Stem Cell 2018;22:25-34.
31. Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine.
Acta Biochim Pol 2015;62:329-337.
32. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming.
Cell 2008;132:567-582.
34. Kooreman NG, Wu JC. Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging.
J R Soc Interface 2010;7 Suppl 6:S753-S763.
35. Cefalo MG, Carai A, Miele E, Po A, Ferretti E, Mastronuzzi A, et al. Human iPSC for therapeutic approaches to the nervous system: present and future applications.
Stem Cells Int 2016;2016:4869071.
36. Ambasudhan R, Dolatabadi N, Nutter A, Masliah E, Mckercher SR, Lipton SA. Potential for cell therapy in Parkinson’s disease using genetically programmed human embryonic stem cellderived neural progenitor cells.
J Comp Neurol 2014;522:2845-2856.
38. Oh JH, Jung CR, Lee MO, Kim J, Son MY. Comparative analysis of human embryonic stem cellderived neural stem cells as an in vitro human model.
Int J Mol Med 2018;41:783-790.
39. Cheng Y, Zhang J, Deng L, Johnson NR, Yu X, Zhang N, et al. Intravenously delivered neural stem cells migrate into ischemic brain, differentiate and improve functional recovery after transient ischemic stroke in adult rats.
Int J Clin Exp Pathol 2015;8:2928-2936.
40. Ryu S, Lee SH, Kim SU, Yoon BW. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain.
Neural Regen Res 2016;11:298-304.
41. Huang L, Zhang L. Neural stem cell therapies and hypoxicischemic brain injury.
Prog Neurobiol 2019;173:1-17.
43. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Kilic E, Kilic U, Salani G, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms.
Brain 2009;132(Pt 8):2239-2251.
44. Hicks C, Stevanato L, Stroemer RP, Tang E, Richardson S, Sinden JD. In vivo and in vitro characterization of the angiogenic effect of CTX0E03 human neural stem cells.
Cell Transplant 2013;22:1541-1552.
45. Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study.
Lancet 2016;388:787-796.
46. Zhang R, Zhang Z, Chopp M. Function of neural stem cells in ischemic brain repair processes.
J Cereb Blood Flow Metab 2016;36:2034-2043.
47. Barry FP, Murphy JM, O’Brien T, Mahon B. Mesenchymal stem cell transplantation for tissue repair.
Semin Plast Surg 2005;19:229-239.
48. Li X, Zheng W, Bai H, Wang J, Wei R, Wen H, et al. Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model.
Neuropsychiatr Dis Treat 2016;12:1287-1293.
49. Donega V, Nijboer CH, van Tilborg G, Dijkhuizen RM, Kavelaars A, Heijnen CJ. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury.
Exp Neurol 2014;261:53-64.
50. Van Velthoven CT, Kavelaars A, Heijnen CJ. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage.
Pediatr Res 2012;71(4 Pt 2):474-481.
51. Chung TN, Kim JH, Choi BY, Jeong JY, Chung SP, Kwon SW, et al. Effect of adipose-derived mesenchymal stem cell administration and mild hypothermia induction on delayed neuronal death after transient global cerebral ischemia.
Crit Care Med 2017;45:e508-e515.
52. Sugiyama Y, Sato Y, Kitase Y, Suzuki T, Kondo T, Mikrogeorgiou A, et al. Intravenous administration of bone marrowderived mesenchymal stem cell, but not adipose tissue-derived stem cell, ameliorated the neonatal hypoxic-ischemic brain injury by changing cerebral inflammatory state in rat.
Front Neurol 2018;9:757.
53. Liao L, Shi B, Chang H, Su X, Zhang L, Bi C, et al. Heparin improves BMSC cell therapy: anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy.
Theranostics 2017;7:106-116.
54. Liu XL, Zhang W, Tang SJ. Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury.
Int J Clin Exp Pathol 2013;7:174-183.
55. Lam PK, Wang KK, Chin DW, Tong CS, Wang Y, Lo KK, et al. Topically applied adipose-derived mesenchymal stem cell treatment in experimental focal cerebral ischemia.
J Clin Neurosci 2020;71:226-233.
56. Ryu B, Sekine H, Homma J, Kobayashi T, Kobayashi E, Kawamata T, et al. Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model.
J Neurosurg 2019;132:442-455.
57. Yang Y, Cai Y, Zhang Y, Liu J, Xu Z. Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in vitro through microRNA-181b/TRPM7 axis.
J Mol Neurosci 2018;65:74-83.
58. Lin QM, Tang XH, Lin SR, Chen BD, Chen F. Bone marrow-derived mesenchymal stem cell transplantation attenuates overexpression of inflammatory mediators in rat brain after cardiopulmonary resuscitation.
Neural Regen Res 2020;15:324-331.
59. Vahidinia Z, Azami Tameh A, Nejati M, Beyer C, Talaei SA, Etehadi Moghadam S, et al. The protective effect of bone marrow mesenchymal stem cells in a rat model of ischemic stroke via reducing the C-Jun N-terminal kinase expression.
Pathol Res Pract 2019;215:152519.
60. Sasaki Y, Sasaki M, Kataoka-Sasaki Y, Nakazaki M, Nagahama H, Suzuki J, et al. Synergic effects of rehabilitation and intravenous infusion of mesenchymal stem cells after stroke in rats.
Phys Ther 2016;96:1791-1798.
61. Hess DC, Sila CA, Furlan AJ, Wechsler LR, Switzer JA, Mays RW. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke.
Int J Stroke 2014;9:381-386.
62. Achyut BR, Varma NR, Arbab AS. Application of umbilical cord blood derived stem cells in diseases of the nervous system.
J Stem Cell Res Ther 2014;4:1000202.
63. Zhao Q, Hu J, Xiang J, Gu Y, Jin P, Hua F, et al. Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke.
Brain Res 2015;1624:489-496.
64. Liang CC, Liu HL, Chang SD, Chen SH, Lee TH. The protective effect of human umbilical cord blood CD34+ cells and estradiol against focal cerebral ischemia in female ovariectomized rat: cerebral MR imaging and immunohistochemical study.
PLoS One 2016;11:e0147133.
65. Shiao ML, Yuan C, Crane AT, Voth JP, Juliano M, Stone LL, et al. Immunomodulation with human umbilical cord blood stem cells ameliorates ischemic brain injury: a brain transcriptome profiling analysis.
Cell Transplant 2019;28:864-873.
66. Gonzales-Portillo GS, Sanberg PR, Franzblau M, GonzalesPortillo C, Diamandis T, Staples M, et al. Mannitol-enhanced delivery of stem cells and their growth factors across the blood-brain barrier.
Cell Transplant 2014;23:531-539.
67. Balaguer Rosello A, Bataller L, Lorenzo I, Jarque I, Salavert M, González E, et al. Infections of the central nervous system after unrelated donor umbilical cord blood transplantation or human leukocyte antigen-matched sibling transplantation.
Biol Blood Marrow Transplant 2017;23:134-139.
68. Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdán S, et al. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke.
Stem Cell Res Ther 2013;4:11.
69. Hocum Stone LL, Xiao F, Rotschafer J, Nan Z, Juliano M, Sanberg CD, et al. Amelioration of ischemic brain injury in rats with human umbilical cord blood stem cells: mechanisms of action.
Cell Transplant 2016;25:1473-1488.
70. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect.
Stem Cells Dev 2009;18:683-692.
71. Jung JW, Kwon M, Choi JC, Shin JW, Park IW, Choi BW, et al. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy.
Yonsei Med J 2013;54:1293-1296.
72. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells.
Stem Cell Res Ther 2016;7:7.
73. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions.
J Cell Sci 2004;117(Pt 23):5655-5664.
74. Wang C, Fei Y, Xu C, Zhao Y, Pan Y. Bone marrow mesenchymal stem cells ameliorate neurological deficits and bloodbrain barrier dysfunction after intracerebral hemorrhage in spontaneously hypertensive rats.
Int J Clin Exp Pathol 2015;8:4715-4724.
75. Acosta SA, Tajiri N, Hoover J, Kaneko Y, Borlongan CV. Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke.
Stroke 2015;46:2616-2627.
76. Hammadi AMA, Alhimyari F. Intra-arterial injection of autologous bone marrow-derived mononuclear cells in ischemic stroke patients.
Exp Clin Transplant 2019;17(Suppl 1):239-241.
77. Liang CC, Lee TH, Chang SD. Effect of umbilical cord blood stem cells transplantation on bladder dysfunction induced by cerebral ischemia in rats.
Taiwan J Obstet Gynecol 2016;55:672-679.
78. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia.
Stroke 2008;39:1569-1574.
79. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details.
Cell Stem Cell 2009;4:206-216.
80. Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone.
Nat Med 2008;14:181-187.
81. Cui LL, Kerkelä E, Bakreen A, Nitzsche F, Andrzejewska A, Nowakowski A, et al. The cerebral embolism evoked by intraarterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity.
Stem Cell Res Ther 2015;6:11.
85. Lim JY, Jeong CH, Jun JA, Kim SM, Ryu CH, Hou Y, et al. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia.
Stem Cell Res Ther 2011;2:38.
87. Fauzi AA, Suroto NS, Bajamal AH, Machfoed MH. Intraventricular transplantation of autologous bone marrow mesenchymal stem cells via ommaya reservoir in persistent vegetative state patients after haemorrhagic stroke: report of two cases & review of the literature.
J Stem Cells Regen Med 2016;12:100-104.
88. Wang Z, Yang X, He J, Du J, Liu S, Jia X. Intracerebroventricular administration of neural stem cells after cardiac arrest.
Conf Proc IEEE Eng Med Biol Soc 2019;2019:4213-4216.
89. Bazhanov N, Ylostalo JH, Bartosh TJ, Tiblow A, Mohammadipoor A, Foskett A, et al. Intraperitoneally infused human mesenchymal stem cells form aggregates with mouse immune cells and attach to peritoneal organs.
Stem Cell Res Ther 2016;7:27.
90. Zhang X, Zhang Q, Li W, Nie D, Chen W, Xu C, et al. Therapeutic effect of human umbilical cord mesenchymal stem cells on neonatal rat hypoxic-ischemic encephalopathy.
J Neurosci Res 2014;92:35-45.
92. Van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration.
Brain Behav Immun 2010;24:387-393.
93. Chen SJ, Chang CM, Tsai SK, Chang YL, Chou SJ, Huang SS, et al. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue.
Stem Cells Dev 2010;19:1757-1767.
95. Trapp T, Kögler G, El-Khattouti A, Sorg RV, Besselmann M, Föcking M, et al. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.
J Biol Chem 2008;283:32244-32253.
96. Wagenaar N, Nijboer CH, van Bel F. Repair of neonatal brain injury: bringing stem cell-based therapy into clinical practice.
Dev Med Child Neurol 2017;59:997-1003.
97. Cunningham MG, Bolay H, Scouten CW, Moore C, Jacoby D, Moskowitz M, et al. Preclinical evaluation of a novel intracerebral microinjection instrument permitting electrophysiologically guided delivery of therapeutics.
Neurosurgery 2004;54:1497-1507.
98. Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, et al. Intranasal delivery of cells to the brain.
Eur J Cell Biol 2009;88:315-324.
99. Galeano C, Qiu Z, Mishra A, Farnsworth SL, Hemmi JJ, Moreira A, et al. The route by which intranasally delivered stem cells enter the central nervous system.
Cell Transplant 2018;27:501-514.
100. Yu D, Li G, Lesniak MS, Balyasnikova IV. Intranasal delivery of therapeutic stem cells to glioblastoma in a mouse model.
J Vis Exp 2017;124:55845.
101. Danielyan L, Beer-Hammer S, Stolzing A, Schäfer R, Siegel G, Fabian C, et al. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease.
Cell Transplant 2014;23 Suppl 1:S123-S139.
102. Balyasnikova IV, Prasol MS, Ferguson SD, Han Y, Ahmed AU, Gutova M, et al. Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors.
Mol Ther 2014;22:140-148.
104. Dey M, Yu D, Kanojia D, Li G, Sukhanova M, Spencer DA, et al. Intranasal oncolytic virotherapy with CXCR4-enhanced stem cells extends survival in mouse model of glioma.
Stem Cell Reports 2016;7:471-482.
105. Donega V, van Velthoven CT, Nijboer CH, van Bel F, Kas MJ, Kavelaars A, et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement.
PLoS One 2013;8:e51253.
106. Li YH, Feng L, Zhang GX, Ma CG. Intranasal delivery of stem cells as therapy for central nervous system disease.
Exp Mol Pathol 2015;98:145-151.
107. Wei N, Yu SP, Gu X, Taylor TM, Song D, Liu XF, et al. Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice.
Cell Transplant 2013;22:977-991.
108. Ji G, Liu M, Zhao XF, Liu XY, Guo QL, Guan ZF, et al. NF-κB signaling is involved in the effects of intranasally engrafted human neural stem cells on neurofunctional improvements in neonatal rat hypoxic-ischemic encephalopathy.
CNS Neurosci Ther 2015;21:926-935.
109. Wei ZZ, Gu X, Ferdinand A, Lee JH, Ji X, Ji XM, et al. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats.
Cell Transplant 2015;24:391-402.
110. Ohshima M, Taguchi A, Tsuda H, Sato Y, Yamahara K, Harada-Shiba M, et al. Intraperitoneal and intravenous deliveries are not comparable in terms of drug efficacy and cell distribution in neonatal mice with hypoxia-ischemia.
Brain Dev 2015;37:376-386.
111. Sarmah D, Agrawal V, Rane P, Bhute S, Watanabe M, Kalia K, et al. Mesenchymal stem cell therapy in ischemic stroke: a meta-analysis of preclinical studies.
Clin Pharmacol Ther 2018;103:990-998.
112. Jha AK, Tharp KM, Ye J, Santiago-Ortiz JL, Jackson WM, Stahl A, et al. Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels.
Biomaterials 2015;47:1-12.
113. Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells.
Adv Drug Deliv Rev 2008;60:199-214.
114. Stone LL, Grande A, Low WC. Neural repair and neuroprotection with stem cells in ischemic stroke.
Brain Sci 2013;3:599-614.
115. Jian WH, Wang HC, Kuan CH, Chen MH, Wu HC, Sun JS, et al. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration.
Biomaterials 2018;174:17-30.
116. Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, et al. Strategies to optimize adult stem cell therapy for tissue regeneration.
Int J Mol Sci 2016;17:982.
117. Vu Q, Xie K, Eckert M, Zhao W, Cramer SC. Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke.
Neurology 2014;82:1277-1286.
118. Lin W, Hsuan YC, Lin MT, Kuo TW, Lin CH, Su YC, et al. Human umbilical cord mesenchymal stem cells preserve adult newborn neurons and reduce neurological injury after cerebral ischemia by reducing the number of hypertrophic microglia/macrophages.
Cell Transplant 2017;26:1798-1810.
119. Satani N, Cai C, Giridhar K, McGhiey D, George S, Parsha K, et al. World-wide efficacy of bone marrow derived mesenchymal stromal cells in preclinical ischemic stroke models: systematic review and meta-analysis.
Front Neurol 2019;10:405.
120. Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke.
Prog Neurobiol 2017;157:49-78.
121. Saenger AK, Christenson RH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment.
Clin Chem 2010;56:21-33.
122. Reis C, Akyol O, Araujo C, Huang L, Enkhjargal B, Malaguit J, et al. Pathophysiology and the monitoring methods for cardiac arrest associated brain injury.
Int J Mol Sci 2017;18:129.
123. Chung TN, Kim JH, Choi BY, Chung SP, Kwon SW, Suh SW. Adipose-derived mesenchymal stem cells reduce neuronal death after transient global cerebral ischemia through prevention of blood-brain barrier disruption and endothelial damage.
Stem Cells Transl Med 2015;4:178-185.
124. Yu Y, Wang D, Li H, Fan J, Liu Y, Zhao X, et al. Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation.
Brain Res 2019;1720:146293.
126. Wang JW, Qiu YR, Fu Y, Liu J, He ZJ, Huang ZT. Transplantation with hypoxia-preconditioned mesenchymal stem cells suppresses brain injury caused by cardiac arrest-induced global cerebral ischemia in rats.
J Neurosci Res 2017;95:2059-2070.
127. Hirko AC, Dallasen R, Jomura S, Xu Y. Modulation of inflammatory responses after global ischemia by transplanted umbilical cord matrix stem cells.
Stem Cells 2008;26:2893-2901.
128. Yamaguchi S, Horie N, Satoh K, Ishikawa T, Mori T, Maeda H, et al. Age of donor of human mesenchymal stem cells affects structural and functional recovery after cell therapy following ischaemic stroke.
J Cereb Blood Flow Metab 2018;38:1199-1212.
129. Dimmeler S, Vasa-Nicotera M. Aging of progenitor cells: limitation for regenerative capacity?
J Am Coll Cardiol 2003;42:2081-2082.
130. Khan M, Mohsin S, Khan SN, Riazuddin S. Repair of senescent myocardium by mesenchymal stem cells is dependent on the age of donor mice.
J Cell Mol Med 2011;15:1515-1527.
131. Sart S, Ma T, Li Y. Preconditioning stem cells for in vivo delivery.
Biores Open Access 2014;3:137-149.
133. Vertelov G, Kharazi L, Muralidhar MG, Sanati G, Tankovich T, Kharazi A. High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA.
Stem Cell Res Ther 2013;4:5.
134. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, et al. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair.
Stem Cells 2011;29:274-285.
135. Van Velthoven CT, Sheldon RA, Kavelaars A, Derugin N, Vexler ZS, Willemen HL, et al. Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke.
Stroke 2013;44:1426-1432.
136. Ou Y, Yu S, Kaneko Y, Tajiri N, Bae EC, Chheda SH, et al. Intravenous infusion of GDNF gene-modified human umbilical cord blood CD34+ cells protects against cerebral ischemic injury in spontaneously hypertensive rats.
Brain Res 2010;1366:217-225.
137. Eckenstein FP, Andersson C, Kuzis K, Woodward WR. Distribution of acidic and basic fibroblast growth factors in the mature, injured and developing rat nervous system.
Prog Brain Res 1994;103:55-64.
138. Benz AH, Shajari M, Peruzki N, Dehghani F, Maronde E. Early growth response-1 induction by fibroblast growth factor-1 via increase of mitogen-activated protein kinase and inhibition of protein kinase B in hippocampal neurons.
Br J Pharmacol 2010;160:1621-1630.
139. Tsai MJ, Tsai SK, Huang MC, Liou DY, Huang SL, Hsieh WH, et al. Acidic FGF promotes neurite outgrowth of cortical neurons and improves neuroprotective effect in a cerebral ischemic rat model.
Neuroscience 2015;305:238-247.
140. Ghazavi H, Hoseini SJ, Ebrahimzadeh-Bideskan A, Mashkani B, Mehri S, Ghorbani A, et al. Fibroblast growth factor type 1 (FGF1)-overexpressed adipose-derived mesenchaymal stem cells (AD-MSC FGF1) induce neuroprotection and functional recovery in a rat stroke model.
Stem Cell Rev Rep 2017;13:670-685.
141. Fatt M, Hsu K, He L, Wondisford F, Miller FD, Kaplan DR, et al. Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation.
Stem Cell Reports 2015;5:988-995.
142. Liu Y, Tang G, Zhang Z, Wang Y, Yang GY. Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion.
Neurosci Lett 2014;579:46-51.
143. Li J, Benashski SE, Venna VR, McCullough LD. Effects of metformin in experimental stroke.
Stroke 2010;41:2645-2652.
144. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, et al. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy.
Br J Pharmacol 2014;171:3146-3157.
145. Ould-Brahim F, Sarma SN, Syal C, Lu KJ, Seegobin M, Carter A, et al. Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery.
Stem Cells Dev 2018;27:1085-1096.
146. Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window.
Proc Natl Acad Sci U S A 1999;96:13496-13500.
147. Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, et al. Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats: version 2.
J Neurosci 2012;32:3462-3473.
148. Franco EC, Cardoso MM, Gouvêia A, Pereira A, Gomes-Leal W. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia.
Neurosci Res 2012;73:122-132.
149. Sharma RK, Zhou Q, Netland PA. Effect of oxidative preconditioning on neural progenitor cells.
Brain Res 2008;1243:19-26.
150. George PM, Bliss TM, Hua T, Lee A, Oh B, Levinson A, et al. Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery.
Biomaterials 2017;142:31-40.
151. Moon GJ, Cho YH, Kim DH, Sung JH, Son JP, Kim S, et al. Serum-mediated activation of bone marrow-derived mesenchymal stem cells in ischemic stroke patients: a novel preconditioning method.
Cell Transplant 2018;27:485-500.
153. Wei W, Wu D, Duan Y, Elkin KB, Chandra A, Guan L, et al. Neuroprotection by mesenchymal stem cell (MSC) administration is enhanced by local cooling infusion (LCI) in ischemia.
Brain Res 2019;1724:146406.
154. Hwang S, Choi J, Kim M. Combining human umbilical cord blood cells with erythropoietin enhances angiogenesis/neurogenesis and behavioral recovery after stroke.
Front Neurol 2019;10:357.
155. Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials.
Chem Soc Rev 2010;39:4422-4432.
156. Zuo L, Feng Q, Han Y, Chen M, Guo M, Liu Z, et al. Therapeutic effect on experimental acute cerebral infarction is enhanced after nanoceria labeling of human umbilical cord mesenchymal stem cells.
Ther Adv Neurol Disord 2019;12:1756286419859725.
157. Choi C, Kim HM, Shon J, Park J, Kim HT, Kang SH, et al. The combination of mannitol and temozolomide increases the effectiveness of stem cell treatment in a chronic stroke model.
Cytotherapy 2018;20:820-829.
158. Shen WB, Anastasiadis P, Nguyen B, Yarnell D, Yarowsky PJ, Frenkel V, et al. Magnetic enhancement of stem cell-targeted delivery into the brain following MR-guided focused ultrasound for opening the blood-brain barrier.
Cell Transplant 2017;26:1235-1246.
159. Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine.
Genes Dis 2016;3:56-71.
161. Kang P, Kumar S, Schaffer D. Novel biomaterials to study neural stem cell mechanobiology and improve cell-replacement therapies.
Curr Opin Biomed Eng 2017;4:13-20.
162. Bolan F, Louca I, Heal C, Cunningham CJ. The potential of biomaterial-based approaches as therapies for ischemic stroke: a systematic review and meta-analysis of pre-clinical studies.
Front Neurol 2019;10:924.
163. Payne SL, Tuladhar A, Obermeyer JM, Varga BV, Teal CJ, Morshead CM, et al. Initial cell maturity changes following transplantation in a hyaluronan-based hydrogel and impacts therapeutic success in the stroke-injured rodent brain.
Biomaterials 2019;192:309-322.
164. Tseng TC, Tao L, Hsieh FY, Wei Y, Chiu IM, Hsu SH. An injectable, self-healing hydrogel to repair the central nervous system.
Adv Mater 2015;27:3518-3524.
165. Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats.
J Cereb Blood Flow Metab 2010;30:534-544.
166. González-Nieto D, Fernández-García L, Pérez-Rigueiro J, Guinea GV, Panetsos F. Hydrogels-assisted cell engraftment for repairing the stroke-damaged brain: chimera or reality.
Polymers (Basel) 2018;10:184.
167. Zhuo F, Liu X, Gao Q, Wang Y, Hu K, Cai Q. Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering.
Mater Sci Eng C Mater Biol Appl 2017;81:1-7.
168. Ballios BG, Cooke MJ, Donaldson L, Coles BL, Morshead CM, van der Kooy D, et al. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation.
Stem Cell Reports 2015;4:1031-1045.
169. Zhong J, Chan A, Morad L, Kornblum HI, Fan G, Carmichael ST. Hydrogel matrix to support stem cell survival after brain transplantation in stroke.
Neurorehabil Neural Repair 2010;24:636-644.
170. Wollenberg AL, O’Shea TM, Kim JH, Czechanski A, Reinholdt LG, Sofroniew MV, et al. Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery.
Biomaterials 2018;178:527-545.
171. Wolfs E, Verfaillie CM, van Laere K, Deroose CM. Radiolabeling strategies for radionuclide imaging of stem cells.
Stem Cell Rev Rep 2015;11:254-274.
172. Zhang F, Duan X, Lu L, Zhang X, Chen M, Mao J, et al. In vivo long-term tracking of neural stem cells transplanted into an acute ischemic stroke model with reporter gene-based bimodal MR and optical imaging.
Cell Transplant 2017;26:1648-1662.
176. Shen WB, Plachez C, Chan A, Yarnell D, Puche AC, Fishman PS, et al. Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B.
Int J Nanomedicine 2013;8:4593-4600.
177. Shen WB, Plachez C, Tsymbalyuk O, Tsymbalyuk N, Xu S, Smith AM, et al. Cell-based therapy in TBI: magnetic retention of neural stem cells in vivo.
Cell Transplant 2016;25:1085-1099.
178. Walczak P, Wojtkiewicz J, Nowakowski A, Habich A, Holak P, Xu J, et al. Real-time MRI for precise and predictable intraarterial stem cell delivery to the central nervous system.
J Cereb Blood Flow Metab 2017;37:2346-2358.
179. Janowski M, Walczak P, Kropiwnicki T, Jurkiewicz E, Domanska-Janik K, Bulte JW, et al. Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF.
PLoS One 2014;9:e97631.
180. Li W, Chen R, Lv J, Wang H, Liu Y, Peng Y, et al. In vivo photoacoustic imaging of brain injury and rehabilitation by high-efficient near-infrared dye labeled mesenchymal stem cells with enhanced brain barrier permeability.
Adv Sci (Weinh) 2017;5:1700277.
182. Duan X, Wang Y, Zhang F, Lu L, Cao M, Lin B, et al. Superparamagnetic iron oxide-loaded cationic polymersomes for cellular MR imaging of therapeutic stem cells in stroke.
J Biomed Nanotechnol 2016;12:2112-2124.
183. Cheng SH, Yu D, Tsai HM, Morshed RA, Kanojia D, Lo LW, et al. Dynamic in vivo SPECT imaging of neural stem cells functionalized with radiolabeled nanoparticles for tracking of glioblastoma.
J Nucl Med 2016;57:279-284.
184. Kim SM, Jeong CH, Woo JS, Ryu CH, Lee JH, Jeun SS. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution.
Int J Nanomedicine 2015;11:13-23.
185. Gervois P, Wolfs E, Ratajczak J, Dillen Y, Vangansewinkel T, Hilkens P, et al. Stem cell-based therapies for ischemic stroke: preclinical results and the potential of imaging-assisted evaluation of donor cell fate and mechanisms of brain regeneration.
Med Res Rev 2016;36:1080-1126.
187. Bhasin A, Kumaran SS, Bhatia R, Mohanty S, Srivastava MV. Safety and feasibility of autologous mesenchymal stem cell transplantation in chronic stroke in Indian patients: a fouryear follow up.
J Stem Cells Regen Med 2017;13:14-19.
188. Zheng W, Honmou O, Miyata K, Harada K, Suzuki J, Liu H, et al. Therapeutic benefits of human mesenchymal stem cells derived from bone marrow after global cerebral ischemia.
Brain Res 2010;1310:8-16.
189. Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R, et al. Part 1: executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
Circulation 2010;122(18 Suppl 3):S640-S656.