2. Feigin VL, Norrving B, Mensah GA. Global burden of stroke.
Circ Res 2017;120:439-448.
3. Krishnamurthi RV, Moran AE, Forouzanfar MH, Bennett DA, Mensah GA, Lawes CM, et al. The global burden of hemorrhagic stroke: a summary of findings from the GBD 2010 study.
Glob Heart 2014;9:101-106.
5. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysi.
Alzheimers Dement 2013;9:63-75.e2.
6. Vogels V, Dammers R, van Bilsen M, Volovici V. Deep cerebral perforators: anatomical distribution and clinical symptoms: an overview.
Stroke 2021;52:e660-e674.
7. Kwiatkowska M, Rzeplin ´ski R, Ciszek B. Anatomy of the pontine arteries and perforators of the basilar artery in humans.
J Anat 2023;243:997-1006.
9. Brinjikji W, Murad MH, Lanzino G, Cloft HJ, Kallmes DF. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis.
Stroke 2013;44:442-447.
10. Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF. CNS small vessel disease: a clinical review.
Neurology 2019;92:1146-1156.
11. Regenhardt RW, Das AS, Lo EH, Caplan LR. Advances in understanding the pathophysiology of lacunar stroke: a review.
JAMA Neurol 2018;75:1273-1281.
12. Rzeplin ´ski R, Sługocki M, Tarka S, Tomaszewski M, Kucewicz M, Karczewski K, et al. Mechanism of spontaneous intracerebral hemorrhage formation: an anatomical specimens-based study.
Stroke 2022;53:3474-3480.
13. Rhoton AL Jr. The supratentorial arteries.
Neurosurgery 2002;51(4 Suppl):S53-S120.
14. Rzeplin ´ski R, Kostyra K, Skadorwa T, Sługocki M, Kostkiewicz B. Acute platelet response to aneurysmal subarachnoid hemorrhage depends on severity and distribution of bleeding: an observational cohort study.
Neurosurg Rev 2021;44:2647-2658.
15. Rzeplin ´ski R, Sługocki M, Kwiatkowska M, Tarka S, Tomaszewski M, Kucewicz M, et al. Standard clinical computed tomography fails to precisely visualise presence, course and branching points of deep cerebral perforators.
Folia Morphol (Warsz) 2023;82:37-41.
16. Kim J, Mukherjee P. Static anatomic techniques. In: Naidich TP, Castillo M, Cha S, Smirniotopoulos JG. Imaging of the Brain. Philadelphia: Elsevier, 2013;3-22.
17. Salzman K, Osborn A, Linscott L. Arterial anatomy and strokes. In: Osborn A, Linscott L, Salzman K. Osborn’s Brain: Imaging, Pathology, and Anatomy. 3rd ed. Philadelphia: Elsevier, 2024; 145-180.
18. Tomaszewski M, Kucewicz M, Rzeplin ´ski R, Małachowski J, Ciszek B. Numerical aspects of modeling flow through the cerebral artery system with multiple small perforators.
Biocybern Biomed Eng 2024;44:341-357.
19. Lasjaunias P, ter Brugge KG, Berenstein A. Embryological and anatomical introduction. In: Lasjaunias P, Brugge KG, Berenstein A. Surgical Neuroangiography. 2nd ed. Berlin: Springer, 2006;1-25.
20. Viale G. The rete mirabile of the cranial base: a millenary legend.
Neurosurgery 2006;58:1198-1208.
21. Herz RC, Jonker M, Verheul HB, Hillen B, Versteeg DH, de Wildt DJ. Middle cerebral artery occlusion in Wistar and Fischer-344 rats: functional and morphological assessment of the model.
J Cereb Blood Flow Metab 1996;16:296-302.
22. Federative International Programme for Anatomical Terminology. Terminologia neuroanatomica [Internet]. Halifax: Dalhousie University; 2017 [accessed July 22, 2024]. Available from:
https://fipat.library.dal.ca/TNA.
23. Rzeplin ´ski R, Tomaszewski M, Sługocki M, Karczewski K, Krajewski P, Skadorwa T, et al. Method of creating 3D models of small caliber cerebral arteries basing on anatomical specimens.
J Biomech 2021;125:110590.
27. Rzeplin ´ski R, Sługocki M, Tomaszewski M, Kucewicz M, Krajewski P, Małachowski J, et al. Basilar tip fenestration giving rise to Percheron’s and mesencephalic arteries. Folia Morphol (Warsz) 2024;83:451-454.
29. Murray CD. The physiological principle of minimum work: I. The vascular system and the cost of blood volume.
Proc Natl Acad Sci U S A 1926;12:207-214.
30. Marinkovic S, Gibo H, Milisavljevic M, Cetkovic M. Anatomic and clinical correlations of the lenticulostriate arteries.
Clin Anat 2001;14:190-195.
31. Weinberg PD. Haemodynamic wall shear stress, endothelial permeability and atherosclerosis—a triad of controversy.
Front Bioeng Biotechnol 2022;10:836680.
32. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives.
Physiol Rev 2011;91:327-387.
34. Kim MO, Li Y, Wei F, Wang J, O’Rourke MF, Adji A, et al. Normal cerebral vascular pulsations in humans: changes with age and implications for microvascular disease.
J Hypertens 2017;35:2245-2256.
35. Wen B, Tian S, Cheng J, Li Y, Zhang H, Xue K, et al. Test-retest multisite reproducibility of neurovascular 4D flow MRI.
J Magn Reson Imaging 2019;49:1543-1552.
36. Dong H, Ding H, Young K, Blaivas M, Christensen PJ, Wang MM. Advanced intimal hyperplasia without luminal narrowing of leptomeningeal arteries in CADASIL.
Stroke 2013;44:1456-1458.
37. Yamada T, Shiraishi R, Taki K, Nakano S, Tokunaga O, Itoh T. Immunohistochemical and ultrastructural examination of smooth muscle cells in aortocoronary saphenous vein grafts.
Angiology 1997;48:381-390.
38. Ko YS, Yeh HI, Haw M, Dupont E, Kaba R, Plenz G, et al. Differential expression of connexin43 and desmin defines two subpopulations of medial smooth muscle cells in the human internal mammary artery.
Arterioscler Thromb Vasc Biol 1999;19:1669-1680.
39. Hainsworth AH, Markus HS, Schneider JA. Cerebral small vessel disease, hypertension, and vascular contributions to cognitive impairment and dementia.
Hypertension 2024;81:75-86.
40. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.
Lancet Neurol 2010;9:689-701.
41. van Veluw SJ, Arfanakis K, Schneider JA. Neuropathology of vascular brain health: insights from ex vivo magnetic resonance imaging-histopathology studies in cerebral small vessel disease.
Stroke 2022;53:404-415.
43. Marinkovic ´ S, Todorovic ´ V, Drndarevic ´ N, Puškaš L, Lazic ´ D, Bojic ´ V, et al. Structure and immunohistochemistry of the human lenticulostriate arteries.
Folia Morphol (Warsz) 2013;72:210-216.
44. Caplan LR. Intracranial branch atheromatous disease: a neglected, understudied, and underused concept.
Neurology 1989;39:1246-1250.
45. Caplan LR. Lacunar infarction and small vessel disease: pathology and pathophysiology.
J Stroke 2015;17:2-6.
46. Fisher CM. Bilateral occlusion of basilar artery branches.
J Neurol Neurosurg Psychiatry 1977;40:1182-1189.
47. Fisher CM, Caplan LR. Basilar artery branch occlusion: a cause of pontine infarction.
Neurology 1971;21:900-905.
48. Kulcsár Z, Ernemann U, Wetzel SG, Bock A, Goericke S, Panagiotopoulos V, et al. High-profile flow diverter (silk) implantation in the basilar artery: efficacy in the treatment of aneurysms and the role of the perforators.
Stroke 2010;41:1690-1696.
49. Masuo O, Terada T, Walker G, Tsuura M, Nakai K, Itakura T. Patency of perforating arteries after stent placement? A study using an in vivo experimental atherosclerosis-induced model.
AJNR Am J Neuroradiol 2005;26:543-548.
50. Masuda J, Ogata J, Yutani C. Smooth muscle cell proliferation and localization of macrophages and T cells in the occlusive intracranial major arteries in moyamoya disease.
Stroke 1993;24:1960-1967.
52. Singer JD, Willett JB. Examining the multilevel model’s error covariance structure. In: Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence New York: Oxford University Press; 2003. p. 243-265.
53. De Silva TM, Faraci FM. Contributions of aging to cerebral small vessel disease.
Annu Rev Physiol 2020;82:275-295.
55. Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, Carlsson CM, et al. Effects of hypoperfusion in Alzheimer’s disease.
J Alzheimers Dis 2011;26(Suppl 3):123-133.
57. Mutsaerts HJMM, Mirza SS, Petr J, Thomas DL, Cash DM, Bocchetta M, et al. Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study.
Brain 2019;142:1108-1120.
58. Wolters FJ, Zonneveld HI, Hofman A, van der Lugt A, Koudstaal PJ, Vernooij MW, et al. Cerebral perfusion and the risk of dementia: a population-based study.
Circulation 2017;136:719-728.
59. Schnerr RS, Jansen JFA, Uludag K, Hofman PAM, Wildberger JE, van Oostenbrugge RJ, et al. Pulsatility of lenticulostriate arteries assessed by 7 tesla flow MRI—measurement, reproducibility, and applicability to aging effect.
Front Physiol 2017;8:961.
60. Geurts LJ, Zwanenburg JJM, Klijn CJM, Luijten PR, Biessels GJ. Higher pulsatility in cerebral perforating arteries in patients with small vessel disease related stroke, a 7T MRI study.
Stroke 2019;50:62-68.
61. Zhang Y, Chang P, Liu N, Jiang Y, Chu Y, Du W, et al. Correlation between lenticulostriate arteries and white matter microstructure changes in patients with cerebral small vessel disease.
Front Neurosci 2023;17:1202538.
62. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care.
Lancet 2017;390:2673-2734.
63. Claassen JA, Jansen RW. Cholinergically mediated augmentation of cerebral perfusion in Alzheimer’s disease and related cognitive disorders: the cholinergic-vascular hypothesis.
J Gerontol A Biol Sci Med Sci 2006;61:267-271.
64. Van Beek AH, Claassen JA. The cerebrovascular role of the cholinergic neural system in Alzheimer’s disease.
Behav Brain Res 2011;221:537-542.
66. Lasjaunias P, Brugge KG, Berenstein A. Embryological and anatomical introduction. In: Surgical Neuroangiography. 2nd ed. Berlin, Heidelberg: Springer, 2006;1-25.
67. Hulley SB, Cummings SR, Newman TB. Designing cross-sectional and cohort studies. In: Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB. Designing Clinical Research. 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2013;85-96.
68. Newman TB, Browner WS, Hulley SB. Enhancing causal inference in observational studies. In: Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB. Designing Clinical Research. 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2013;117-136.
70. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease.
Neuron 2017;96:17-42.