1. Hachinski VC, Potter P, Merskey H. Leuko-araiosis.
Arch Neurol 1987;44:21-23.
2. O’Sullivan M. Leukoaraiosis.
Pract Neurol 2008;8:26-38.
3. Hachinski VC, Potter P, Merskey H. Leuko-araiosis: an ancient term for a new problem.
Can J Neurol Sci 1986;13(4 Suppl):533-534.
4. Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The cardiovascular health study.
Stroke 1996;27:1274-1282.
5. Lin Q, Huang WQ, Ma QL, Lu CX, Tong SJ, Ye JH, et al. Incidence and risk factors of leukoaraiosis from 4683 hospitalized patients: a cross-sectional study.
Medicine (Baltimore) 2017;96:e7682.
6. Wen W, Sachdev PS, Li JJ, Chen X, Anstey KJ. White matter hyperintensities in the forties: their prevalence and topography in an epidemiological sample aged 44-48.
Hum Brain Mapp 2009;30:1155-1167.
7. Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home.
Stroke 1995;26:1171-1177.
8. Dufouil C, Godin O, Chalmers J, Coskun O, MacMahon S, Tzourio-Mazoyer N, et al. Severe cerebral white matter hyperintensities predict severe cognitive decline in patients with cerebrovascular disease history.
Stroke 2009;40:2219-2221.
9. van den Heuvel DM, ten Dam VH, de Craen AJ, AdmiraalBehloul F, Olofsen H, Bollen EL, et al. Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population.
J Neurol Neurosurg Psychiatry 2006;77:149-153.
10. Zheng JJ, Delbaere K, Close JC, Sachdev PS, Lord SR. Impact of white matter lesions on physical functioning and fall risk in older people: a systematic review.
Stroke 2011;42:2086-2090.
11. Moon SY, de Souto Barreto P, Rolland Y, Chupin M, Bouyahia A, Fillon L, et al. Prospective associations between white matter hyperintensities and lower extremity function.
Neurology 2018;90:e1291-e1297.
12. Lee Y, Ko J, Choi YE, Oh JS, Kim JS, Sunwoo MK, et al. Areas of white matter hyperintensities and motor symptoms of Parkinson disease.
Neurology 2020;95:e291-e298.
13. Clancy U, Gilmartin D, Jochems ACC, Knox L, Doubal FN, Wardlaw JM. Neuropsychiatric symptoms associated with cerebral small vessel disease: a systematic review and metaanalysis.
Lancet Psychiatry 2021;8:225-236.
14. Tosto G, Zimmerman ME, Carmichael OT, Brickman AM; Alzheimer’s Disease Neuroimaging Initiative. Predicting aggressive decline in mild cognitive impairment: the importance of white matter hyperintensities.
JAMA Neurol 2014;71:872-877.
15. Kloppenborg RP, Nederkoorn PJ, Geerlings MI, van den Berg E. Presence and progression of white matter hyperintensities and cognition: a meta-analysis.
Neurology 2014;82:2127-2138.
16. Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update.
Nat Rev Neurol 2015;11:157-165.
17. Hu HY, Ou YN, Shen XN, Qu Y, Ma YH, Wang ZT, et al. White matter hyperintensities and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 36 prospective studies.
Neurosci Biobehav Rev 2021;120:16-27.
18. Whitman GT, Tang Y, Lin A, Baloh RW. A prospective study of cerebral white matter abnormalities in older people with gait dysfunction.
Neurology 2001;57:990-994.
19. Srikanth V, Beare R, Blizzard L, Phan T, Stapleton J, Chen J, et al. Cerebral white matter lesions, gait, and the risk of incident falls: a prospective population-based study.
Stroke 2009;40:175-180.
20. Su C, Yang X, Wei S, Zhao R. Association of cerebral small vessel disease with gait and balance disorders.
Front Aging Neurosci 2022;14:834496.
21. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis.
BMJ 2010;341:c3666.
22. Ryu WS, Woo SH, Schellingerhout D, Jang MU, Park KJ, Hong KS, et al. Stroke outcomes are worse with larger leukoaraiosis volumes.
Brain 2017;140:158-170.
23. Georgakis MK, Duering M, Wardlaw JM, Dichgans M. WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis.
Neurology 2019;92:e1298-e1308.
24. Imaizumi T, Inamura S, Nomura T. The severities of white matter lesions possibly influence the recurrences of several stroke types.
J Stroke Cerebrovasc Dis 2014;23:1897-1902.
25. Rensma SP, van Sloten TT, Launer LJ, Stehouwer CDA. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: a systematic review and meta-analysis.
Neurosci Biobehav Rev 2018;90:164-173.
26. Ghaznawi R, Geerlings MI, Jaarsma-Coes M, Hendrikse J, de Bresser J; UCC-Smart Study Group. Association of white matter hyperintensity markers on MRI and long-term risk of mortality and ischemic stroke: the SMART-MR study.
Neurology 2021;96:e2172-e2183.
27. Godin O, Dufouil C, Maillard P, Delcroix N, Mazoyer B, Crivello F, et al. White matter lesions as a predictor of depression in the elderly: the 3C-Dijon study.
Biol Psychiatry 2008;63:663-669.
28. Herrmann LL, Le Masurier M, Ebmeier KP. White matter hyperintensities in late life depression: a systematic review.
J Neurol Neurosurg Psychiatry 2008;79:619-624.
29. Wang L, Leonards CO, Sterzer P, Ebinger M. White matter lesions and depression: a systematic review and meta-analysis.
J Psychiatr Res 2014;56:56-64.
30. Fang Y, Qin T, Liu W, Ran L, Yang Y, Huang H, et al. Cerebral small-vessel disease and risk of incidence of depression: a meta-analysis of longitudinal cohort studies.
J Am Heart Assoc 2020;9:e016512.
31. Launer LJ, Berger K, Breteler MM, Dufouil C, Fuhrer R, Giampaoli S, et al. Regional variability in the prevalence of cerebral white matter lesions: an MRI study in 9 European countries (CASCADE).
Neuroepidemiology 2006;26:23-29.
32. Mok V, Srikanth V, Xiong Y, Phan TG, Moran C, Chu S, et al. Race-ethnicity and cerebral small vessel disease--comparison between Chinese and White populations.
Int J Stroke 2014;9(Suppl A100):36-42.
33. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam scan study.
J Neurol Neurosurg Psychiatry 2001;70:9-14.
34. Wen W, Sachdev P. The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals.
Neuroimage 2004;22:144-154.
35. Liao D, Cooper L, Cai J, Toole J, Bryan N, Burke G, et al. The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: the ARIC study.
Neuroepidemiology 1997;16:149-162.
37. Zhang S, Kang X. Investigation of the risk factors for leukoaraiosis (LA).
Asia Pac J Public Health 2013;25(4 Suppl):64S71S.
39. Jin H, Ding Z, Lian S, Zhao Y, He S, Zhou L, et al. Prevalence and risk factors of white matter lesions in Tibetan patients without acute stroke.
Stroke 2020;51:149-153.
40. Verny M, Duyckaerts C, Pierot L, Hauw JJ. Leuko-araiosis.
Dev Neurosci 1991;13:245-250.
41. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT.
Stroke 2001;32:1318-1322.
43. Fazekas F, Barkhof F, Wahlund LO, Pantoni L, Erkinjuntti T, Scheltens P, et al. CT and MRI rating of white matter lesions.
Cerebrovasc Dis 2002;13(Suppl 2):31-36.
44. Kates R, Atkinson D, Brant-Zawadzki M. Fluid-attenuated inversion recovery (FLAIR): clinical prospectus of current and future applications.
Top Magn Reson Imaging 1996;8:389-396.
46. Tomura N, Kato K, Takahashi S, Sashi R, Sakuma I, Narita K, et al. Comparison of multishot echo-planar fluid-attenuated inversion-recovery imaging with fast spin-echo fluid-attenuated inversion-recovery and T2-weighted imaging in depiction of white matter lesions.
J Comput Assist Tomogr 2002;26:810-814.
47. Piguet O, Ridley LJ, Grayson DA, Bennett HP, Creasey H, Lye TC, et al. Comparing white matter lesions on T2 and FLAIR MRI in the Sydney older persons study.
Eur J Neurol 2005;12:399-402.
48. Barkhof F, Scheltens P. Imaging of white matter lesions.
Cerebrovasc Dis 2002;13(Suppl 2):21-30.
49. Grueter BE, Schulz UG. Age-related cerebral white matter disease (leukoaraiosis): a review.
Postgrad Med J 2012;88:79-87.
50. Taylor WD, Hsu E, Krishnan KR, MacFall JR. Diffusion tensor imaging: background, potential, and utility in psychiatric research.
Biol Psychiatry 2004;55:201-207.
51. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review.
J Mol Neurosci 2008;34:51-61.
52. Jones DK, Lythgoe D, Horsfield MA, Simmons A, Williams SC, Markus HS. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI.
Stroke 1999;30:393-397.
53. Haacke EM, Ayaz M, Khan A, Manova ES, Krishnamurthy B, Gollapalli L, et al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain.
J Magn Reson Imaging 2007;26:256-264.
54. Kraft E, Trenkwalder C, Auer DP. T2*-weighted MRI differentiates multiple system atrophy from Parkinson’s disease.
Neurology 2002;59:1265-1267.
55. Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations.
Front Neurol 2014;4:205.
56. Huang WQ, Lin HN, Lin Q, Tzeng CM. Susceptibility weighted imaging (SWI) recommended as a regular magnetic resonance diagnosis for vascular dementia to identify independent idiopathic normal pressure hydrocephalus before ventriculo-peritoneal (V-P) shunt treatment: a case study.
Front Neurol 2019;10:262.
57. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging.
AJR Am J Roentgenol 1987;149:351-356.
58. Schmidt R, Schmidt H, Haybaeck J, Loitfelder M, Weis S, Cavalieri M, et al. Heterogeneity in age-related white matter changes.
Acta Neuropathol 2011;122:171-185.
59. Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons.
Biol Psychiatry 2008;64:273-280.
60. Payne ME, Fetzer DL, MacFall JR, Provenzale JM, Byrum CE, Krishnan KR. Development of a semi-automated method for quantification of MRI gray and white matter lesions in geriatric subjects.
Psychiatry Res 2002;115:63-77.
61. Scheltens P, Erkinjunti T, Leys D, Wahlund LO, Inzitari D, del Ser T, et al. White matter changes on CT and MRI: an overview of visual rating scales.
Eur Neurol 1998;39:80-89.
62. Mäntylä R, Erkinjuntti T, Salonen O, Aronen HJ, Peltonen T, Pohjasvaara T, et al. Variable agreement between visual rating scales for white matter hyperintensities on MRI. Comparison of 13 rating scales in a poststroke cohort.
Stroke 1997;28:1614-1623.
63. Kapeller P, Barber R, Vermeulen RJ, Adèr H, Scheltens P, Freidl W, et al. Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements.
Stroke 2003;34:441-445.
64. Admiraal-Behloul F, van den Heuvel DM, Olofsen H, van Osch MJ, van der Grond J, van Buchem MA, et al. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly.
Neuroimage 2005;28:607-617.
65. Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJ, Vermersch P, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging.
J Neurol Sci 1993;114:7-12.
66. Andere A, Jindal G, Molino J, Collins S, Merck D, Burton T, et al. Volumetric white matter hyperintensity ranges correspond to Fazekas scores on brain MRI.
J Stroke Cerebrovasc Dis 2022;31:106333.
67. Lin Q, Huang WQ, Tzeng CM. Genetic associations of leukoaraiosis indicate pathophysiological mechanisms in white matter lesions etiology.
Rev Neurosci 2015;26:343-358.
68. Huang WQ, Yi KH, Li Z, Wang H, Li ML, Cai LL, et al. DNA methylation profiling reveals the change of inflammation-associated ZC3H12D in leukoaraiosis.
Front Aging Neurosci 2018;10:143.
69. Griffanti L, Jenkinson M, Suri S, Zsoldos E, Mahmood A, Filippini N, et al. Classification and characterization of periventricular and deep white matter hyperintensities on MRI: a study in older adults.
Neuroimage 2018;170:174-181.
70. de Groot JC, de Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM. Cerebral white matter lesions and depressive symptoms in elderly adults.
Arch Gen Psychiatry 2000;57:1071-1076.
71. Krishnan MS, O’Brien JT, Firbank MJ, Pantoni L, Carlucci G, Erkinjuntti T, et al. Relationship between periventricular and deep white matter lesions and depressive symptoms in older people. The LADIS study.
Int J Geriatr Psychiatry 2006;21:983-989.
72. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities.
Neurology 1993;43:1683-1689.
73. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Koudstaal PJ, Oudkerk M, et al. Cerebral white matter lesions and the risk of dementia.
Arch Neurol 2004;61:1531-1534.
74. de Groot JC, de Leeuw FE, Oudkerk M, van Gijn J, Hofman A, Jolles J, et al. Cerebral white matter lesions and cognitive function: the Rotterdam scan study.
Ann Neurol 2000;47:145-151.
75. De Groot JC, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J, et al. Periventricular cerebral white matter lesions predict rate of cognitive decline.
Ann Neurol 2002;52:335-341.
76. Sze G, De Armond SJ, Brant-Zawadzki M, Davis RL, Norman D, Newton TH. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding.
AJR Am J Roentgenol 1986;147:331-337.
77. Fazekas F, Schmidt R, Scheltens P. Pathophysiologic mechanisms in the development of age-related white matter changes of the brain.
Dement Geriatr Cogn Disord 1998;9(Suppl 1):2-5.
78. Thomas AJ, O’Brien JT, Barber R, McMeekin W, Perry R. A neuropathological study of periventricular white matter hyperintensities in major depression.
J Affect Disord 2003;76:49-54.
79. van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, Wokke JH, van Gijn J. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly: a morphometric correlation with arteriolosclerosis and dilated perivascular spaces.
Brain 1991;114(Pt 2):761-774.
80. Wu X, Ya J, Zhou D, Ding Y, Ji X, Meng R. Pathogeneses and imaging features of cerebral white matter lesions of vascular origins.
Aging Dis 2021;12:2031-2051.
81. Mayer PL, Kier EL. The controversy of the periventricular white matter circulation: a review of the anatomic literature.
AJNR Am J Neuroradiol 1991;12:223-228.
82. Moody DM, Bell MA, Challa VR. Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study.
AJNR Am J Neuroradiol 1990;11:431-439.
83. Beyer JL, Young R, Kuchibhatla M, Krishnan KR. Hyperintense MRI lesions in bipolar disorder: a meta-analysis and review.
Int Rev Psychiatry 2009;21:394-409.
84. ten Dam VH, van den Heuvel DM, de Craen AJ, Bollen EL, Murray HM, Westendorp RG, et al. Decline in total cerebral blood flow is linked with increase in periventricular but not deep white matter hyperintensities.
Radiology 2007;243:198-203.
85. Stewart PA, Magliocco M, Hayakawa K, Farrell CL, Del Maestro RF, Girvin J, et al. A quantitative analysis of blood-brain barrier ultrastructure in the aging human.
Microvasc Res 1987;33:270-282.
86. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review.
Stroke 1997;28:652-659.
87. Pantoni L. Pathophysiology of age-related cerebral white matter changes.
Cerebrovasc Dis 2002;13(Suppl 2):7-10.
88. Jung KH, Stephens KA, Yochim KM, Riphagen JM, Kim CM, Buckner RL, et al. Heterogeneity of cerebral white matter lesions and clinical correlates in older adults.
Stroke 2021;52:620-630.
89. Schmidt R, Fazekas F, Kapeller P, Schmidt H, Hartung HP. MRI white matter hyperintensities: three-year follow-up of the Austrian stroke prevention study.
Neurology 1999;53:132-139.
90. Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F; Austrian Stroke Prevention Study. Progression of cerebral white matter lesions: 6-year results of the Austrian stroke prevention study.
Lancet 2003;361:2046-2048.
91. Longstreth WT Jr, Arnold AM, Beauchamp NJ Jr, Manolio TA, Lefkowitz D, Jungreis C, et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the cardiovascular health study.
Stroke 2005;36:56-61.
92. Taylor WD, MacFall JR, Provenzale JM, Payne ME, McQuoid DR, Steffens DC, et al. Serial MR imaging of volumes of hyperintense white matter lesions in elderly patients: correlation with vascular risk factors.
AJR Am J Roentgenol 2003;181:571-576.
93. Masana Y, Motozaki T. Emergence and progress of white matter lesion in brain check-up.
Acta Neurol Scand 2003;107:187-194.
94. van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MM. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam scan study.
Stroke 2008;39:2712-2719.
95. Sachdev P, Wen W, Chen X, Brodaty H. Progression of white matter hyperintensities in elderly individuals over 3 years.
Neurology 2007;68:214-222.
96. Gyanwali B, Shaik MA, Tan BY, Venketasubramanian N, Chen C, Hilal S. Risk factors for and clinical relevance of incident and progression of cerebral small vessel disease markers in an Asian memory clinic population.
J Alzheimers Dis 2019;67:1209-1219.
97. Sachdev P, Chen X, Wen W. White matter hyperintensities in mid-adult life.
Curr Opin Psychiatry 2008;21:268-274.
98. van den Heuvel DM, Admiraal-Behloul F, ten Dam VH, Olofsen H, Bollen EL, Murray HM, et al. Different progression rates for deep white matter hyperintensities in elderly men and women.
Neurology 2004;63:1699-1701.
99. Liao D, Cooper L, Cai J, Toole JF, Bryan NR, Hutchinson RG, et al. Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control: the ARIC study.
Stroke 1996;27:2262-2270.
100. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, et al. A follow-up study of blood pressure and cerebral white matter lesions.
Ann Neurol 1999;46:827-833.
101. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, et al. Hypertension and cerebral white matter lesions in a prospective cohort study.
Brain 2002;125(Pt 4):765-772.
102. van Dijk EJ, Breteler MM, Schmidt R, Berger K, Nilsson LG, Oudkerk M, et al. The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study.
Hypertension 2004;44:625-630.
104. Basile AM, Pantoni L, Pracucci G, Asplund K, Chabriat H, Erkinjuntti T, et al. Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes: the LADIS (leukoaraiosis and disability in the elderly) study.
Cerebrovasc Dis 2006;21:315-322.
105. Vuorinen M, Solomon A, Rovio S, Nieminen L, Kåreholt I, Tuomilehto J, et al. Changes in vascular risk factors from midlife to late life and white matter lesions: a 20-year follow-up study.
Dement Geriatr Cogn Disord 2011;31:119-125.
106. Habes M, Erus G, Toledo JB, Zhang T, Bryan N, Launer LJ, et al. White matter hyperintensities and imaging patterns of brain ageing in the general population.
Brain 2016;139(Pt 4):1164-1179.
107. Guo X, Pantoni L, Simoni M, Bengtsson C, Björkelund C, Lissner L, et al. Blood pressure components and changes in relation to white matter lesions: a 32-year prospective population study.
Hypertension 2009;54:57-62.
108. Lane CA, Barnes J, Nicholas JM, Sudre CH, Cash DM, Parker TD, et al. Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study.
Lancet Neurol 2019;18:942-952.
110. Sargurupremraj M, Suzuki H, Jian X, Sarnowski C, Evans TE, Bis JC, et al. Cerebral small vessel disease genomics and its implications across the lifespan.
Nat Commun 2020;11:6285.
112. Marcus J, Gardener H, Rundek T, Elkind MS, Sacco RL, Decarli C, et al. Baseline and longitudinal increases in diastolic blood pressure are associated with greater white matter hyperintensity volume: the northern Manhattan study.
Stroke 2011;42:2639-2641.
114. Sudre CH, Smith L, Atkinson D, Chaturvedi N, Ourselin S, Barkhof F, et al. Cardiovascular risk factors and white matter hyperintensities: difference in susceptibility in South Asians compared with Europeans.
J Am Heart Assoc 2018;7:e010533.
115. Caunca MR, Simonetto M, Cheung YK, Alperin N, Lee SH, Elkind MSV, et al. Diastolic blood pressure is associated with regional white matter lesion load: the northern Manhattan study.
Stroke 2020;51:372-378.
116. Verhaaren BF, Vernooij MW, de Boer R, Hofman A, Niessen WJ, van der Lugt A, et al. High blood pressure and cerebral white matter lesion progression in the general population.
Hypertension 2013;61:1354-1359.
117. Dufouil C, de Kersaint-Gilly A, Besançon V, Levy C, Auffray E, Brunnereau L, et al. Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI cohort.
Neurology 2001;56:921-926.
118. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.
Lancet Neurol 2010;9:689-701.
119. Sierra C. Essential hypertension, cerebral white matter pathology and ischemic stroke.
Curr Med Chem 2014;21:2156-2164.
120. Dufouil C, Chalmers J, Coskun O, Besançon V, Bousser MG, Guillon P, et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (perindopril protection against recurrent stroke study) magnetic resonance imaging substudy.
Circulation 2005;112:1644-1650.
121. Firbank MJ, Wiseman RM, Burton EJ, Saxby BK, O’Brien JT, Ford GA. Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure. Brain atrophy, WMH change and blood pressure.
J Neurol 2007;254:713-721.
122. van Middelaar T, Argillander TE, Schreuder FHBM, Deinum J, Richard E, Klijn CJM. Effect of antihypertensive medication on cerebral small vessel disease: a systematic review and metaanalysis.
Stroke 2018;49:1531-1533.
123. Kjeldsen SE, Narkiewicz K, Burnier M, Oparil S. Intensive blood pressure lowering prevents mild cognitive impairment and possible dementia and slows development of white matter lesions in brain: the SPRINT memory and cognition in decreased hypertension (SPRINT MIND) study.
Blood Press 2018;27:247-248.
124. SPRINT MIND Investigators for the SPRINT Research Group. Association of intensive vs standard blood pressure control with cerebral white matter lesions.
JAMA 2019;322:524-534.
126. Veldink JH, Scheltens P, Jonker C, Launer LJ. Progression of cerebral white matter hyperintensities on MRI is related to diastolic blood pressure.
Neurology 1998;51:319-320.
127. Zhang D, Tang Y, Ge J, Liu Y, Jin J, He M. Age and diastolic blood pressure play an important role in the progression of white matter lesions: a meta-analysis.
Eur Neurol 2020;83:351-359.
128. Pantoni L, Garcia JH. The significance of cerebral white matter abnormalities 100 years after Binswanger’s report. A review.
Stroke 1995;26:1293-1301.
129. Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis.
J Neurol Neurosurg Psychiatry 2010;81:192-197.
130. Oishi E, Ohara T, Sakata S, Fukuhara M, Hata J, Yoshida D, et al. Day-to-day blood pressure variability and risk of dementia in a general Japanese elderly population: the Hisayama study.
Circulation 2017;136:516-525.
131. Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis.
BMJ 2016;354:i4098.
132. Alpérovitch A, Blachier M, Soumaré A, Ritchie K, Dartigues JF, Richard-Harston S, et al. Blood pressure variability and risk of dementia in an elderly cohort, the three-city study.
Alzheimers Dement 2014;10(5 Suppl):S330-S337.
133. Gunstad J, Cohen RA, Tate DF, Paul RH, Poppas A, Hoth K, et al. Blood pressure variability and white matter hyperintensities in older adults with cardiovascular disease.
Blood Press 2005;14:353-358.
134. Brickman AM, Reitz C, Luchsinger JA, Manly JJ, Schupf N, Muraskin J, et al. Long-term blood pressure fluctuation and cerebrovascular disease in an elderly cohort.
Arch Neurol 2010;67:564-569.
135. Liu Z, Zhao Y, Zhang H, Chai Q, Cui Y, Diao Y, et al. Excessive variability in systolic blood pressure that is self-measured at home exacerbates the progression of brain white matter lesions and cognitive impairment in the oldest old.
Hypertens Res 2016;39:245-253.
136. Filomena J, Riba-Llena I, Vinyoles E, Tovar JL, Mundet X, Castañé X, et al. Short-term blood pressure variability relates to the presence of subclinical brain small vessel disease in primary hypertension.
Hypertension 2015;66:634-640. discussion 445.
137. Yang S, Yuan J, Qin W, Yang L, Fan H, Li Y, et al. Twenty-four-hour ambulatory blood pressure variability is associated with total magnetic resonance imaging burden of cerebral small-vessel disease.
Clin Interv Aging 2018;13:1419-1427.
138. Chen X, Zhu Y, Geng S, Li Q, Jiang H. Association of blood pressure variability and intima-media thickness with white matter hyperintensities in hypertensive patients.
Front Aging Neurosci 2019;11:192.
139. van Middelaar T, Richard E, Moll van Charante EP, van Gool WA, van Dalen JW. Visit-to-visit blood pressure variability and progression of white matter hyperintensities among older people with hypertension.
J Am Med Dir Assoc 2019;20:1175-1177.e1.
141. Zhang B, Huo Y, Yang Z, Lv H, Wang Y, Feng J, et al. Day to day blood pressure variability associated with cerebral arterial dilation and white matter hyperintensity.
Hypertension 2022;79:1455-1465.
142. Tully PJ, Yano Y, Launer LJ, Kario K, Nagai M, Mooijaart SP, et al. Association between blood pressure variability and cerebral small-vessel disease: a systematic review and meta-analysis.
J Am Heart Assoc 2020;9:e013841.
143. Havlik RJ, Foley DJ, Sayer B, Masaki K, White L, Launer LJ. Variability in midlife systolic blood pressure is related to latelife brain white matter lesions: the Honolulu-Asia aging study.
Stroke 2002;33:26-30.
144. Zhou TL, Rensma SP, van der Heide FCT, Henry RMA, Kroon AA, Houben AJHM, et al. Blood pressure variability and microvascular dysfunction: the Maastricht study.
J Hypertens 2020;38:1541-1550.
145. Jiang X, Guo Y, Zhao Y, Gao X, Peng D, Zhang H, et al. Multiscale dynamics of blood pressure fluctuation is associated with white matter lesion burden in older adults with and without hypertension: observations from a pilot study.
Front Cardiovasc Med 2021;8:636702.
147. Ma Y, Song A, Viswanathan A, Blacker D, Vernooij MW, Hofman A, et al. Blood pressure variability and cerebral small vessel disease: a systematic review and meta-analysis of population-based cohorts.
Stroke 2020;51:82-89.
148. Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, et al. Stroke risk profile predicts white matter hyperintensity volume: the Framingham study.
Stroke 2004;35:1857-1861.
151. Guan J, Yan C, Gao Q, Li J, Wang L, Hong M, et al. Analysis of risk factors in patients with leukoaraiosis.
Medicine (Baltimore) 2017;96:e6153.
152. Hilal S, Mok V, Youn YC, Wong A, Ikram MK, Chen CL. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries.
J Neurol Neurosurg Psychiatry 2017;88:669-674.
153. Debette S, Seshadri S, Beiser A, Au R, Himali JJ, Palumbo C, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline.
Neurology 2011;77:461-468.
154. Power MC, Deal JA, Sharrett AR, Jack CR Jr, Knopman D, Mosley TH, et al. Smoking and white matter hyperintensity progression: the ARIC-MRI study.
Neurology 2015;84:841-848.
156. Jimenez-Conde J, Biffi A, Rahman R, Kanakis A, Butler C, Sonni S, et al. Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke.
Stroke 2010;41:437-442.
157. Ohwaki K, Yano E, Tamura A, Inoue T, Saito I. Hypercholesterolemia is associated with a lower risk of cerebral ischemic small vessel disease detected on brain checkups.
Clin Neurol Neurosurg 2013;115:669-672.
159. Wang Z, Chen Q, Chen J, Yang N, Zheng K. Risk factors of cerebral small vessel disease: a systematic review and metaanalysis.
Medicine (Baltimore) 2021;100:e28229.
160. Okamura T, Hashimoto Y, Hamaguchi M, Ohbora A, Kojima T, Fukui M. Metabolically healthy obesity and risk of leukoaraiosis; a population based cross-sectional study.
Endocr J 2018;65:669-675.
161. Coutinho T, Turner ST, Kullo IJ. Aortic pulse wave velocity is associated with measures of subclinical target organ damage.
JACC Cardiovasc Imaging 2011;4:754-761.
162. Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson Ó, et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility--Reykjavik study.
Brain 2011;134(Pt 11):3398-3407.
163. Poels MM, Zaccai K, Verwoert GC, Vernooij MW, Hofman A, van der Lugt A, et al. Arterial stiffness and cerebral small vessel disease: the Rotterdam scan study.
Stroke 2012;43:2637-2642.
164. Saji N, Shimizu H, Kawarai T, Tadano M, Kita Y, Yokono K. Increased brachial-ankle pulse wave velocity is independently associated with white matter hyperintensities.
Neuroepidemiology 2011;36:252-257.
165. Tsao CW, Seshadri S, Beiser AS, Westwood AJ, Decarli C, Au R, et al. Relations of arterial stiffness and endothelial function to brain aging in the community.
Neurology 2013;81:984-991.
166. Singer J, Trollor JN, Baune BT, Sachdev PS, Smith E. Arterial stiffness, the brain and cognition: a systematic review.
Ageing Res Rev 2014;15:16-27.
167. van Sloten TT, Protogerou AD, Henry RM, Schram MT, Launer LJ, Stehouwer CD. Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: a systematic review and meta-analysis.
Neurosci Biobehav Rev 2015;53:121-130.
169. Caughey MC, Qiao Y, Meyer ML, Palta P, Matsushita K, Tanaka H, et al. Relationship between central artery stiffness, brain arterial dilation, and white matter hyperintensities in older adults: the ARIC study—brief report.
Arterioscler Thromb Vasc Biol 2021;41:2109-2116.
170. Robert C, Ling LH, Tan ESJ, Gyanwali B, Venketasubramanian N, Lim SL, et al. Effects of carotid artery stiffness on cerebral small-vessel disease and cognition.
J Am Heart Assoc 2022;11:e027295.
171. Miyagi T, Ishida A, Shinzato T, Ohya Y. Arterial stiffness is associated with small vessel disease irrespective of blood pressure in stroke-free individuals.
Stroke 2023;54:2814-2821.
172. Tomoto T, Tarumi T, Zhang R. Central arterial stiffness, brain white matter hyperintensity and total brain volume across the adult lifespan.
J Hypertens 2023;41:819-829.
173. Brandts A, van Elderen SG, Westenberg JJ, van der Grond J, van Buchem MA, Huisman MV, et al. Association of aortic arch pulse wave velocity with left ventricular mass and lacunar brain infarcts in hypertensive patients: assessment with MR imaging.
Radiology 2009;253:681-688.
174. van Elderen SG, Brandts A, Westenberg JJ, van der Grond J, Tamsma JT, van Buchem MA, et al. Aortic stiffness is associated with cardiac function and cerebral small vessel disease in patients with type 1 diabetes mellitus: assessment by magnetic resonance imaging.
Eur Radiol 2010;20:1132-1138.
175. Ohmine T, Miwa Y, Yao H, Yuzuriha T, Takashima Y, Uchino A, et al. Association between arterial stiffness and cerebral white matter lesions in community-dwelling elderly subjects.
Hypertens Res 2008;31:75-81.
176. Hannawi Y, Vaidya D, Yanek LR, Johansen MC, Kral BG, Becker LC, et al. Association of vascular properties with the brain white matter hyperintensity in middle-aged population.
J Am Heart Assoc 2022;11:e024606.
178. Del Brutto OH, Mera RM, Costa AF, Recalde BY, Rumbea DA, Sedler MJ. Arterial stiffness and progression of white matter hyperintensities of presumed vascular origin in communitydwelling older adults of Amerindian ancestry: the Atahualpa project cohort.
Clin Neurol Neurosurg 2022;221:107411.
179. Allison EY, Al-Khazraji BK. Association of arterial stiffness index and brain structure in the UK Biobank: a 10-year retrospective analysis.
Aging Dis 2023 Jun 8 [Epub].
https://doi.org/10.14336/AD.2023.0419.
180. Scheuermann BC, Parr SK, Schulze KM, Kunkel ON, Turpin VG, Liang J, et al. Associations of cerebrovascular regulation and arterial stiffness with cerebral small vessel disease: a systematic review and meta-analysis.
J Am Heart Assoc 2023;12:e032616.
181. Hassan A, Hunt BJ, O’Sullivan M, Bell R, D’Souza R, Jeffery S, et al. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction.
Brain 2004;127(Pt 1):212-219.
182. Welch GN, Loscalzo J. Homocysteine and atherothrombosis.
N Engl J Med 1998;338:1042-1050.
184. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis.
BMJ 2002;325:1202.
185. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis.
JAMA 2002;288:2015-2022.
186. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes.
JAMA 1995;274:1049-1057.
187. Dufouil C, Alpérovitch A, Ducros V, Tzourio C. Homocysteine, white matter hyperintensities, and cognition in healthy elderly people.
Ann Neurol 2003;53:214-221.
188. Longstreth WT Jr, Katz R, Olson J, Bernick C, Carr JJ, Malinow MR, et al. Plasma total homocysteine levels and cranial magnetic resonance imaging findings in elderly persons: the cardiovascular health study.
Arch Neurol 2004;61:67-72.
189. Seshadri S, Wolf PA, Beiser AS, Selhub J, Au R, Jacques PF, et al. Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study.
Arch Neurol 2008;65:642-649.
190. Hogervorst E, Ribeiro HM, Molyneux A, Budge M, Smith AD. Plasma homocysteine levels, cerebrovascular risk factors, and cerebral white matter changes (leukoaraiosis) in patients with Alzheimer disease.
Arch Neurol 2002;59:787-793.
191. Vermeer SE, van Dijk EJ, Koudstaal PJ, Oudkerk M, Hofman A, Clarke R, et al. Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam scan study.
Ann Neurol 2002;51:285-289.
192. Wright CB, Paik MC, Brown TR, Stabler SP, Allen RH, Sacco RL, et al. Total homocysteine is associated with white matter hyperintensity volume: the northern Manhattan study.
Stroke 2005;36:1207-1211.
193. Naka H, Nomura E, Takahashi T, Wakabayashi S, Kajikawa H, Kohriyama T, et al. Plasma total homocysteine levels are associated with advanced leukoaraiosis but not with asymptomatic microbleeds on T2*-weighted MRI in patients with stroke.
Eur J Neurol 2006;13:261-265.
194. Shimomura T, Anan F, Umeno Y, Eshima N, Saikawa T, Yoshimatsu H, et al. Hyperhomocysteinaemia is a significant risk factor for white matter lesions in Japanese type 2 diabetic patients.
Eur J Neurol 2008;15:289-294.
195. Anan F, Masaki T, Tatsukawa H, Nagano S, Oribe M, Eshima N, et al. The role of homocysteine as a significant risk factor for white matter lesions in Japanese women with rheumatoid arthritis.
Metabolism 2009;58:69-73.
196. Tseng YL, Chang YY, Liu JS, Su CS, Lai SL, Lan MY. Association of plasma homocysteine concentration with cerebral white matter hyperintensity on magnetic resonance images in stroke patients.
J Neurol Sci 2009;284:36-39.
197. Pavlovic AM, Pekmezovic T, Obrenovic R, Novakovic I, Tomic G, Mijajlovic M, et al. Increased total homocysteine level is associated with clinical status and severity of white matter changes in symptomatic patients with subcortical small vessel disease.
Clin Neurol Neurosurg 2011;113:711-715.
198. Raz N, Yang Y, Dahle CL, Land S. Volume of white matter hyperintensities in healthy adults: contribution of age, vascular risk factors, and inflammation-related genetic variants.
Biochim Biophys Acta 2012;1822:361-369.
199. Cloonan L, Fitzpatrick KM, Kanakis AS, Furie KL, Rosand J, Rost NS. Metabolic determinants of white matter hyperintensity burden in patients with ischemic stroke.
Atherosclerosis 2015;240:149-153.
200. Shan Y, Tan S, Wang Y, Li K, Zhang L, Liao S, et al. Risk factors and clinical manifestations of juxtacortical small lesions: a neuroimaging study.
Front Neurol 2017;8:497.
201. Piao X, Wu G, Yang P, Shen J, De A, Wu J, et al. Association between homocysteine and cerebral small vessel disease: a meta-analysis.
J Stroke Cerebrovasc Dis 2018;27:2423-2430.
202. Shen Y, Dong ZF, Pan PL, Xu G, Huang JY, Liu CF. Association of homocysteine, folate, and white matter hyperintensities in Parkinson’s patients with different motor phenotypes.
Neurol Sci 2019;40:1855-1863.
203. Nam KW, Kwon HM, Jeong HY, Park JH, Kwon H, Jeong SM. Serum homocysteine level is related to cerebral small vessel disease in a healthy population.
Neurology 2019;92:e317-e325.
204. Wang X, Yin H, Ji X, Sang S, Shao S, Wang G, et al. Association between homocysteine and white matter hyperintensities in rural-dwelling Chinese people with asymptomatic intracranial arterial stenosis: a population-based study.
Brain Behav 2021;11:e02205.
205. Kloppenborg RP, Geerlings MI, Visseren FL, Mali WP, Vermeulen M, van der Graaf Y, et al. Homocysteine and progression of generalized small-vessel disease: the SMART-MR study.
Neurology 2014;82:777-783.
206. Hooshmand B, Mangialasche F, Kalpouzos G, Solomon A, Kåreholt I, Smith AD, et al. Association of vitamin B12, folate, and sulfur amino acids with brain magnetic resonance imaging measures in older adults: a longitudinal population-based study.
JAMA Psychiatry 2016;73:606-613.
207. Sachdev P, Parslow R, Salonikas C, Lux O, Wen W, Kumar R, et al. Homocysteine and the brain in midadult life: evidence for an increased risk of leukoaraiosis in men.
Arch Neurol 2004;61:1369-1376.
208. Gao Y, Wei S, Song B, Qin J, Fang H, Ji Y, et al. Homocysteine level is associated with white matter hyperintensity locations in patients with acute ischemic stroke.
PLoS One 2015;10:e0144431.
209. Lee KO, Woo MH, Chung D, Choi JW, Kim NK, Kim OJ, et al. Differential impact of plasma homocysteine levels on the periventricular and subcortical white matter hyperintensities on the brain.
Front Neurol 2019;10:1174.
210. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion.
Clin Chem 2004;50:3-32.
211. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population.
JAMA 1993;270:2693-2698.
212. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease.
Arch Neurol 1998;55:1449-1455.
213. Stabler SP. Vitamin B12 deficiency.
N Engl J Med 2013;368:149-160.
214. Selhub J, Bagley LC, Miller J, Rosenberg IH. B vitamins, homocysteine, and neurocognitive function in the elderly.
Am J Clin Nutr 2000;71:614S-620S.
215. Kado DM, Karlamangla AS, Huang MH, Troen A, Rowe JW, Selhub J, et al. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur studies of successful aging.
Am J Med 2005;118:161-167.
216. Pieters B, Staals J, Knottnerus I, Rouhl R, Menheere P, Kessels A, et al. Periventricular white matter lucencies relate to low vitamin B12 levels in patients with small vessel stroke.
Stroke 2009;40:1623-1626.
217. de Lau LM, Smith AD, Refsum H, Johnston C, Breteler MM. Plasma vitamin B12 status and cerebral white-matter lesions.
J Neurol Neurosurg Psychiatry 2009;80:149-157.
218. van Overbeek EC, Staals J, van Oostenbrugge RJ. Vitamin B12 and progression of white matter lesions. A 2-year follow-up study in first-ever lacunar stroke patients.
PLoS One 2013;8:e78100.
219. Iosifescu DV, Papakostas GI, Lyoo IK, Lee HK, Renshaw PF, Alpert JE, et al. Brain MRI white matter hyperintensities and one-carbon cycle metabolism in non-geriatric outpatients with major depressive disorder (part I).
Psychiatry Res 2005;140:291-299.
220. Scott TM, Tucker KL, Bhadelia A, Benjamin B, Patz S, Bhadelia R, et al. Homocysteine and B vitamins relate to brain volume and white-matter changes in geriatric patients with psychiatric disorders.
Am J Geriatr Psychiatry 2004;12:631-638.
221. Hickie I, Naismith S, Ward PB, Scott E, Mitchell P, Wilhelm K, et al. Vascular risk and low serum B12 predict white matter lesions in patients with major depression.
J Affect Disord 2005;85:327-332.
222. Tangney CC, Aggarwal NT, Li H, Wilson RS, Decarli C, Evans DA, et al. Vitamin B12, cognition, and brain MRI measures: a cross-sectional examination.
Neurology 2011;77:1276-1282.
223. Narayan SK, Firbank MJ, Saxby BK, Stansby G, Hansrani M, O’Brien JT, et al. Elevated plasma homocysteine is associated with increased brain atrophy rates in older subjects with mild hypertension.
Dement Geriatr Cogn Disord 2011;31:341-348.
224. Sponne IE, Gaire D, Stabler SP, Droesch S, Barbé FM, Allen RH, et al. Inhibition of vitamin B12 metabolism by OH-cobalamin c-lactam in rat oligodendrocytes in culture: a model for studying neuropathy due to vitamin B12 deficiency.
Neurosci Lett 2000;288:191-194.
225. Kim S, Lim IK, Park GH, Paik WK. Biological methylation of myelin basic protein: enzymology and biological significance.
Int J Biochem Cell Biol 1997;29:743-751.
226. Annweiler C, Allali G, Allain P, Bridenbaugh S, Schott AM, Kressig RW, et al. Vitamin D and cognitive performance in adults: a systematic review.
Eur J Neurol 2009;16:1083-1089.
227. Sultan S. Neuroimaging changes associated with vitamin D deficiency-a narrative review.
Nutr Neurosci 2022;25:1650-1658.
228. Zhao Y, Xu J, Feng Z, Wang J. Impact of 25-hydroxy vitamin D on white matter hyperintensity in elderly patients: a systematic review and meta-analysis.
Front Neurol 2022;12:721427.
229. Buell JS, Dawson-Hughes B, Scott TM, Weiner DE, Dallal GE, Qui WQ, et al. 25-hydroxyvitamin D, dementia, and cerebrovascular pathology in elders receiving home services.
Neurology 2010;74:18-26.
230. Prager JM, Thomas C, Ankenbrandt WJ, Meyer JR, Gao Y, Ragin A, et al. Association of white matter hyperintensities with low serum 25-hydroxyvitamin D levels.
AJNR Am J Neuroradiol 2014;35:1145-1149.
231. Chung PW, Park KY, Kim JM, Shin DW, Park MS, Chung YJ, et al. 25-hydroxyvitamin D status is associated with chronic cerebral small vessel disease.
Stroke 2015;46:248-251.
232. Feng C, Tang N, Huang H, Zhang G, Qi X, Shi F. 25-Hydroxy vitamin D level is associated with total MRI burden of cerebral small vessel disease in ischemic stroke patients.
Int J Neurosci 2019;129:49-54.
233. Annweiler C, Bartha R, Karras SN, Gautier J, Roche F, Beauchet O. Vitamin D and white matter abnormalities in older adults: a quantitative volumetric analysis of brain MRI.
Exp Gerontol 2015;63:41-47.
235. Sakurai T, Ogama N, Toba K. Lower vitamin D is associated with white matter hyperintensity in elderly women with Alzheimer’s disease and amnestic mild cognitive impairment.
J Am Geriatr Soc 2014;62:1993-1994.
236. Schramm S, Schliephake L, Himpfen H, Caspers S, Erbel R, Jöckel KH, et al. Vitamin D and white matter hyperintensities: results of the population-based Heinz Nixdorf Recall Study and 1000BRAINS.
Eur J Neurol 2021;28:1849-1858.
237. Annweiler C, Annweiler T, Bartha R, Herrmann FR, Camicioli R, Beauchet O. Vitamin D and white matter abnormalities in older adults: a cross-sectional neuroimaging study.
Eur J Neurol 2014;21:1436-e95.
238. Michos ED, Carson KA, Schneider AL, Lutsey PL, Xing L, Sharrett AR, et al. Vitamin D and subclinical cerebrovascular disease: the atherosclerosis risk in communities brain magnetic resonance imaging study.
JAMA Neurol 2014;71:863-871.
239. Littlejohns TJ, Kos K, Henley WE, Lang IA, Annweiler C, Beauchet O, et al. Vitamin D and risk of neuroimaging abnormalities.
PLoS One 2016;11:e0154896.
240. Karakis I, Pase MP, Beiser A, Booth SL, Jacques PF, Rogers G, et al. Association of serum vitamin D with the risk of incident dementia and subclinical indices of brain aging: the Framingham heart study.
J Alzheimers Dis 2016;51:451-461.
241. Bowman GL, Silbert LC, Howieson D, Dodge HH, Traber MG, Frei B, et al. Nutrient biomarker patterns, cognitive function, and MRI measures of brain aging.
Neurology 2012;78:241-249.
242. Brouwer-Brolsma EM, van der Zwaluw NL, van Wijngaarden JP, Dhonukshe-Rutten RA, in’t Veld PH, Feskens EJ, et al. Higher serum 25-hydroxyvitamin D and lower plasma glucose are associated with larger gray matter volume but not with white matter or total brain volume in Dutch community-dwelling older adults.
J Nutr 2015;145:1817-1823.
243. Putaala J, Kurkinen M, Tarvos V, Salonen O, Kaste M, Tatlisumak T. Silent brain infarcts and leukoaraiosis in young adults with first-ever ischemic stroke.
Neurology 2009;72:1823-1829.
244. Kim KW, Seo H, Kwak MS, Kim D. Visceral obesity is associated with white matter hyperintensity and lacunar infarct.
Int J Obes (Lond) 2017;41:683-688.
246. Alqarni A, Jiang J, Crawford JD, Koch F, Brodaty H, Sachdev P, et al. Sex differences in risk factors for white matter hyperintensities in non-demented older individuals.
Neurobiol Aging 2021;98:197-204.
248. Murray AD, McNeil CJ, Salarirad S, Whalley LJ, Staff RT. Early life socioeconomic circumstance and late life brain hyperintensities--a population based cohort study.
PLoS One 2014;9:e88969.
249. Mortamais M, Portet F, Brickman AM, Provenzano FA, Muraskin J, Akbaraly TN, et al. Education modulates the impact of white matter lesions on the risk of mild cognitive impairment and dementia.
Am J Geriatr Psychiatry 2014;22:1336-1345.
250. Schretlen DJ, Inscore AB, Vannorsdall TD, Kraut M, Pearlson GD, Gordon B, et al. Serum uric acid and brain ischemia in normal elderly adults.
Neurology 2007;69:1418-1423.
252. Backhouse EV, McHutchison CA, Cvoro V, Shenkin SD, Wardlaw JM. Early life risk factors for cerebrovascular disease: a systematic review and meta-analysis.
Neurology 2017;88:976-984.
253. Christensen H, Batterham PJ, Mackinnon AJ, Anstey KJ, Wen W, Sachdev PS. Education, atrophy, and cognitive change in an epidemiological sample in early old age.
Am J Geriatr Psychiatry 2009;17:218-226.
254. Elkins JS, Longstreth WT Jr, Manolio TA, Newman AB, Bhadelia RA, Johnston SC. Education and the cognitive decline associated with MRI-defined brain infarct.
Neurology 2006;67:435-440.
255. Breteler MM, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JH, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam study.
Neurology 1994;44:1246-1252.
256. Habes M, Sotiras A, Erus G, Toledo JB, Janowitz D, Wolk DA, et al. White matter lesions: spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy.
Neurology 2018;91:e964-e975.
257. Sachdev PS, Parslow R, Wen W, Anstey KJ, Easteal S. Sex differences in the causes and consequences of white matter hyperintensities.
Neurobiol Aging 2009;30:946-956.
258. Sullivan P, Pary R, Telang F, Rifai AH, Zubenko GS. Risk factors for white matter changes detected by magnetic resonance imaging in the elderly.
Stroke 1990;21:1424-1428.
259. Schmidt R, Fazekas F, Kleinert G, Offenbacher H, Gindl K, Payer F, et al. Magnetic resonance imaging signal hyperintensities in the deep and subcortical white matter. A comparative study between stroke patients and normal volunteers.
Arch Neurol 1992;49:825-827.
260. Assareh AA, Mather KA, Crawford JD, Wen W, Anstey KJ, Easteal S, et al. Renin-angiotensin system genetic polymorphisms and brain white matter lesions in older Australians.
Am J Hypertens 2014;27:1191-1198.
261. Geerlings MI, Appelman AP, Vincken KL, Algra A, Witkamp TD, Mali WP, et al. Brain volumes and cerebrovascular lesions on MRI in patients with atherosclerotic disease. The SMARTMR study.
Atherosclerosis 2010;210:130-136.
262. Brickman AM, Schupf N, Manly JJ, Luchsinger JA, Andrews H, Tang MX, et al. Brain morphology in older African Americans, Caribbean Hispanics, and whites from northern Manhattan.
Arch Neurol 2008;65:1053-1061.
264. Gottesman RF, Coresh J, Catellier DJ, Sharrett AR, Rose KM, Coker LH, et al. Blood pressure and white-matter disease progression in a biethnic cohort: atherosclerosis risk in communities (ARIC) study.
Stroke 2010;41:3-8.
265. Turner ST, Jack CR, Fornage M, Mosley TH, Boerwinkle E, de Andrade M. Heritability of leukoaraiosis in hypertensive sibships.
Hypertension 2004;43:483-487.
266. Atwood LD, Wolf PA, Heard-Costa NL, Massaro JM, Beiser A, D’Agostino RB, et al. Genetic variation in white matter hyperintensity volume in the Framingham study.
Stroke 2004;35:1609-1613.
267. Sachdev PS, Thalamuthu A, Mather KA, Ames D, Wright MJ, Wen W; OATS Collaborative Research Team. White matter hyperintensities are under strong genetic influence.
Stroke 2016;47:1422-1428.
268. Paternoster L, Chen W, Sudlow CL. Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19,000 subjects.
Stroke 2009;40:2020-2026.
269. Lopez LM, Hill WD, Harris SE, Valdes Hernandez M, Munoz Maniega S, Bastin ME, et al. Genes from a translational analysis support a multifactorial nature of white matter hyperintensities.
Stroke 2015;46:341-347.
270. Jian X, Satizabal CL, Smith AV, Wittfeld K, Bis JC, Smith JA, et al. Exome chip analysis identifies low-frequency and rare variants in MRPL38 for white matter hyperintensities on brain magnetic resonance imaging.
Stroke 2018;49:1812-1819.
271. Yadav BK, Shin BS. Single-nucleotide polymorphisms of tight junction component claudin-1 associated with leukoaraiosis.
J Stroke Cerebrovasc Dis 2015;24:1662-1670.
272. Oliveira-Filho J, Ornellas AC, Zhang CR, Oliveira LM, AraújoSantos T, Borges VM, et al. COX-2 rs20417 polymorphism is associated with stroke and white matter disease.
J Stroke Cerebrovasc Dis 2015;24:1817-1822.
273. Zhang M, Zhu W, Yun W, Wang Q, Cheng M, Zhang Z, et al. Correlation of matrix metalloproteinase-2 single nucleotide polymorphisms with the risk of small vessel disease (SVD).
J Neurol Sci 2015;356:61-64.
274. Yadav BK, Oh SY, Kim NK, Shin BS. Association of rs2075575 and rs9951307 polymorphisms of AQP-4 gene with leukoaraiosis.
J Stroke Cerebrovasc Dis 2014;23:1199-1206.
275. Huang WQ, Ye HM, Li FF, Yi KH, Zhang Y, Cai LL, et al. Analysis of genetic polymorphisms associated with leukoaraiosis in the southern Chinese population: a case-control study. Medicine (Baltimore) 2016;95:e3857.
276. Huang WQ, Ye HM, Cai LL, Ma QL, Lu CX, Tong SJ, et al. The associations of PMF1, ICAM1, AGT, TRIM65, FBF1, and ACOX1 variants with leukoaraiosis in Chinese population.
Front Genet 2019;10:615.
277. Yadav BK, Shin BS. Single-nucleotide polymorphisms of the adherent junction component cadherin gene are associated with leukoaraiosis.
Gene 2018;676:65-72.
278. Yadav BK, Yadav R, Kang HG, Kim KW, Lee CH, Shin BS. Association of genetic variation in a Wnt signaling pathway gene (β-catenin) with susceptibility to leukoaraiosis.
Genet Test Mol Biomarkers 2020;24:708-716.
279. Li J, Abedi V, Zand R, Griessenauer CJ. Replication of top loci from COL4A1/2 associated with white matter hyperintensity burden in patients with ischemic stroke.
Stroke 2020;51:3751-3755.
280. Parikh NS, Dueker N, Varela D, Del Brutto VJ, Rundek T, Wright CB, et al. Association between PNPLA3 rs738409 G variant and MRI cerebrovascular disease biomarkers.
J Neurol Sci 2020;416:116981.
282. Liu JY, Yao M, Dai Y, Han F, Zhai FF, Zhang DD, et al. Rare NOTCH3 variants in a Chinese population-based cohort and its relationship with cerebral small vessel disease.
Stroke 2021;52:3918-3925.
283. Ferroni P, Palmirotta R, Egeo G, Aurilia C, Valente MG, Spila A, et al. Association of LTA and SOD gene polymorphisms with cerebral white matter hyperintensities in migraine patients.
Int J Mol Sci 2022;23:13781.
284. Gao Y, Su B, Luo Y, Tian Y, Hong S, Gao S, et al. HLA-C*07:01 and HLA-DQB1*02:01 protect against white matter hyperintensities and deterioration of cognitive function: a population-based cohort study.
Brain Behav Immun 2024;115:250-257.
285. Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium.
Ann Neurol 2011;69:928-939.
286. Verhaaren BF, Debette S, Bis JC, Smith JA, Ikram MK, Adams HH, et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI.
Circ Cardiovasc Genet 2015;8:398-409.
288. Traylor M, Tozer DJ, Croall ID, Lisiecka-Ford DM, Olorunda AO, Boncoraglio G, et al. Genetic variation in PLEKHG1 is associated with white matter hyperintensities (n = 11,226).
Neurology 2019;92:e749-e757.
290. Rutten-Jacobs LCA, Tozer DJ, Duering M, Malik R, Dichgans M, Markus HS, et al. Genetic study of white matter integrity in UK Biobank (n=8448) and the overlap with stroke, depression, and dementia.
Stroke 2018;49:1340-1347.
291. Armstrong NJ, Mather KA, Sargurupremraj M, Knol MJ, Malik R, Satizabal CL, et al. Common genetic variation indicates separate causes for periventricular and deep white matter hyperintensities.
Stroke 2020;51:2111-2121.
292. Simpson JE, Hosny O, Wharton SB, Heath PR, Holden H, Fernando MS, et al. Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways.
Stroke 2009;40:369-375.
293. Xu H, Stamova B, Jickling G, Tian Y, Zhan X, Ander BP, et al. Distinctive RNA expression profiles in blood associated with white matter hyperintensities in brain.
Stroke 2010;41:2744-2749.
296. Hou XH, Bi YL, Tan MS, Xu W, Li JQ, Shen XN, et al. Genomewide association study identifies Alzheimer’s risk variant in MS4A6A influencing cerebrospinal fluid sTREM2 levels.
Neurobiol Aging 2019;84:241.e13-241.e20.
297. Peters XQ, Malinga TH, Agoni C, Olotu FA, Soliman MES. Zoning in on Tankyrases: a brief review on the past, present and prospective studies.
Anticancer Agents Med Chem 2019;19:1920-1934.
299. Iwaya T, Maesawa C, Kimura T, Ogasawara S, Ikeda K, Kimura Y, et al. Infrequent mutation of the human envoplakin gene is closely linked to the tylosis oesophageal cancer locus in sporadic oesophageal squamous cell carcinomas.
Oncol Rep 2005;13:703-707.
300. Weber R, Weimar C, Blatchford J, Hermansson K, Wanke I, Möller-Hartmann C, et al. Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the prevention regimen for effectively avoiding second strokes (PRoFESS) MRI substudy.
Stroke 2012;43:2336-2342.
301. Peng J, Lu F, Wang Z, Zhong M, Sun L, Hu N, et al. Excessive lowering of blood pressure is not beneficial for progression of brain white matter hyperintensive and cognitive impairment in elderly hypertensive patients: 4-year follow-up study.
J Am Med Dir Assoc 2014;15:904-910.
303. Godin O, Tzourio C, Maillard P, Mazoyer B, Dufouil C. Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the three-city (3C)-Dijon magnetic resonance imaging study.
Circulation 2011;123:266-273.
304. Schiffrin EL. Blood pressure lowering in PROGRESS (perindopril protection against recurrent stroke study) and white matter hyperintensities: should this progress matter to patients?
Circulation 2005;112:1525-1526.
305. van Dalen JW, Moll van Charante EP, Caan MWA, Scheltens P, Majoie CBLM, Nederveen AJ, et al. Effect of long-term vascular care on progression of cerebrovascular lesions: magnetic resonance imaging substudy of the PreDIVA trial (prevention of dementia by intensive vascular care).
Stroke 2017;48:1842-1848.
306. de Havenon A, Majersik JJ, Tirschwell DL, McNally JS, Stoddard G, Rost NS. Blood pressure, glycemic control, and white matter hyperintensity progression in type 2 diabetics.
Neurology 2019;92:e1168-e1175.
307. White WB, Wakefield DB, Moscufo N, Guttmann CRG, Kaplan RF, Bohannon RW, et al. Effects of intensive versus standard ambulatory blood pressure control on cerebrovascular outcomes in older people (INFINITY).
Circulation 2019;140:1626-1635.
309. Su C, Wu H, Yang X, Zhao B, Zhao R. The relation between antihypertensive treatment and progression of cerebral small vessel disease: a systematic review and meta-analysis of randomized controlled trials.
Medicine (Baltimore) 2021;100:e26749.
311. Willmot M, Ghadami A, Whysall B, Clarke W, Wardlaw J, Bath PM. Transdermal glyceryl trinitrate lowers blood pressure and maintains cerebral blood flow in recent stroke.
Hypertension 2006;47:1209-1215.
312. Sare GM, Gray LJ, Bath PM. Effect of antihypertensive agents on cerebral blood flow and flow velocity in acute ischaemic stroke: systematic review of controlled studies.
J Hypertens 2008;26:1058-1064.
314. Croall ID, Tozer DJ, Moynihan B, Khan U, O’Brien JT, Morris RG, et al. Effect of standard vs intensive blood pressure control on cerebral blood flow in small vessel disease: the PRESERVE randomized clinical trial.
JAMA Neurol 2018;75:720-727.
315. de Heus RAA, de Jong DLK, Lawlor BL, Claassen JAHR; NILVAD Study Group. Longitudinal changes in the control mechanisms for blood pressure and cerebral blood flow in Alzheimer’s disease: secondary results of a randomized controlled trial.
Cereb Circ Cogn Behav 2021;2:100024.
316. van Rijssel AE, Stins BC, Beishon LC, Sanders ML, Quinn TJ, Claassen JAHR, et al. Effect of antihypertensive treatment on cerebral blood flow in older adults: a systematic review and meta-analysis.
Hypertension 2022;79:1067-1078.
317. Efimova NY, Chernov VI, Efimova IY, Lishmanov YB. Influence of antihypertensive therapy on cerebral perfusion in patients with metabolic syndrome: relationship with cognitive function and 24-h arterial blood pressure monitoring.
Cardiovasc Ther 2015;33:209-215.
318. Dolui S, Detre JA, Gaussoin SA, Herrick JS, Wang DJJ, Tamura MK, et al. Association of intensive vs standard blood pressure control with cerebral blood flow: secondary analysis of the SPRINT MIND randomized clinical trial.
JAMA Neurol 2022;79:380-389.
319. Ikeme JC, Pergola PE, Scherzer R, Shlipak MG, Catanese L, McClure LA, et al. Cerebral white matter hyperintensities, kidney function decline, and recurrent stroke after intensive blood pressure lowering: results from the secondary prevention of small subcortical strokes (SPS3) trial.
J Am Heart Assoc 2019;8:e010091.
320. Williamson JD, Launer LJ, Bryan RN, Coker LH, Lazar RM, Gerstein HC, et al. Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels: a randomized clinical trial.
JAMA Intern Med 2014;174:324-333.
321. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ. Low blood pressure and the risk of dementia in very old individuals.
Neurology 2003;61:1667-1672.
322. McGrath ER, Beiser AS, DeCarli C, Plourde KL, Vasan RS, Greenberg SM, et al. Blood pressure from mid- to late life and risk of incident dementia.
Neurology 2017;89:2447-2454.
324. Jiang C, Lai Y, Du X, Wang Y, Li S, He L, et al. Effects of intensive blood pressure control on cardiovascular and cognitive outcomes in patients with atrial fibrillation: insights from the SPRINT trial.
Europace 2022;24:1560-1568.
325. Poon IO. Effects of antihypertensive drug treatment on the risk of dementia and cognitive impairment.
Pharmacotherapy 2008;28:366-375.
326. Hughes D, Judge C, Murphy R, Loughlin E, Costello M, Whiteley W, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis.
JAMA 2029;323:1934-1944.
327. Peters R, Xu Y, Fitzgerald O, Aung HL, Beckett N, Bulpitt C, et al. Blood pressure lowering and prevention of dementia: an individual patient data meta-analysis.
Eur Heart J 2022;43:4980-4990.
328. Ding J, Davis-Plourde KL, Sedaghat S, Tully PJ, Wang W, Phillips C, et al. Antihypertensive medications and risk for incident dementia and Alzheimer’s disease: a meta-analysis of individual participant data from prospective cohort studies.
Lancet Neurol 2020;19:61-70.
329. Lee CJ, Hwang J, Kang CY, Kim HC, Ryu DR, Ihm SH, et al. Protective effect of controlled blood pressure on risk of dementia in low-risk, grade 1 hypertension.
J Hypertens 2021;39:1662-1669.
330. Canavan M, O’Donnell MJ. Hypertension and cognitive impairment: a review of mechanisms and key concepts.
Front Neurol 2022;13:821135.
331. Tully PJ, Dartigues JF, Debette S, Helmer C, Artero S, Tzourio C. Dementia risk with antihypertensive use and blood pressure variability: a cohort study.
Neurology 2016;87:601-608.
332. Lennon MJ, Lam BCP, Lipnicki DM, Crawford JD, Peters R, Schutte AE, et al. Use of antihypertensives, blood pressure, and estimated risk of dementia in late life: an individual participant data meta-analysis.
JAMA Netw Open 2023;6:e2333353.
333. Jiang C, Li S, Wang Y, Lai Y, Bai Y, Zhao M, et al. Diastolic blood pressure and intensive blood pressure control on cognitive outcomes: insights from the SPRINT MIND trial.
Hypertension 2023;80:580-589.
334. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, et al. Incident dementia and blood pressure lowering in the hypertension in the very elderly trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial.
Lancet Neurol 2008;7:683-689.
335. van Middelaar T, van Vught LA, van Gool WA, Simons EMF, van den Born BH, Moll van Charante EP, et al. Blood pressurelowering interventions to prevent dementia: a systematic review and meta-analysis.
J Hypertens 2018;36:1780-1787.
336. SPRINT MIND Investigators for the SPRINT Research Group. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial.
JAMA 2019;321:553-561.
338. Kellar D, Lockhart SN, Aisen P, Raman R, Rissman RA, Brewer J, et al. Intranasal insulin reduces white matter hyperintensity progression in association with improvements in cognition and CSF biomarker profiles in mild cognitive impairment and Alzheimer’s disease.
J Prev Alzheimers Dis 2021;8:240-248.
341. Launer LJ, Miller ME, Williamson JD, Lazar RM, Gerstein HC, Murray AM, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy.
Lancet Neurol 2011;10:969-977.
343. Mortensen MB, Falk E. Primary prevention with statins in the elderly.
J Am Coll Cardiol 2018;71:85-94.
344. Cholesterol Treatment Trialists’ Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials.
Lancet 2019;393:407-415.
345. Martínez-Sánchez P, Rivera-Ordóñez C, Fuentes B, Ortega-Casarrubios MA, Idrovo L, Díez-Tejedor E. The beneficial effect of statins treatment by stroke subtype.
Eur J Neurol 2009;16:127-133.
346. Bernick C, Katz R, Smith NL, Rapp S, Bhadelia R, Carlson M, et al. Statins and cognitive function in the elderly: the cardiovascular health study.
Neurology 2005;65:1388-1394.
347. ten Dam VH, van den Heuvel DM, van Buchem MA, Westendorp RG, Bollen EL, Ford I, et al. Effect of pravastatin on cerebral infarcts and white matter lesions.
Neurology 2005;64:1807-1809.
348. Ramanan VK, Przybelski SA, Graff-Radford J, Castillo AM, Lowe VJ, Mielke MM, et al. Statins and brain health: Alzheimer’s disease and cerebrovascular disease biomarkers in older adults.
J Alzheimers Dis 2018;65:1345-1352.
350. Mok VC, Lam WW, Fan YH, Wong A, Ng PW, Tsoi TH, et al. Effects of statins on the progression of cerebral white matter lesion: post hoc analysis of the ROCAS (regression of cerebral artery stenosis) study.
J Neurol 2009;256:750-757.
351. Ji T, Zhao Y, Wang J, Cui Y, Duan D, Chai Q, et al. Effect of low-dose statins and apolipoprotein E genotype on cerebral small vessel disease in older hypertensive patients: a subgroup analysis of a randomized clinical trial.
J Am Med Dir Assoc 2018;19:995-1002.e4.
352. Zhang H, Cui Y, Zhao Y, Dong Y, Duan D, Wang J, et al. Effects of sartans and low-dose statins on cerebral white matter hyperintensities and cognitive function in older patients with hypertension: a randomized, double-blind and placebocontrolled clinical trial.
Hypertens Res 2019;42:717-729.
355. Sterzer P, Meintzschel F, Rösler A, Lanfermann H, Steinmetz H, Sitzer M. Pravastatin improves cerebral vasomotor reactivity in patients with subcortical small-vessel disease.
Stroke 2001;32:2817-2820.
356. Ii M, Losordo DW. Statins and the endothelium.
Vascul Pharmacol 2007;46:1-9.
357. Liu Z, Zhao Y, Wei F, Ye L, Lu F, Zhang H, et al. Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis.
Atherosclerosis 2014;233:291-299.
358. Janic´ M, Lunder M, Šabovicˇ M. A low-dose combination of fluvastatin and valsartan: a new “drug” and a new approach for decreasing the arterial age.
Biomed Res Int 2015;2015:235709.
359. Rizos CV, Liberopoulos EN, Tellis CC, Tselepis AD, Elisaf MS. The effect of combining rosuvastatin with sartans of different peroxisome proliferator receptor-γ activating capacity on plasma 8-isoprostane prostaglandin F2a levels.
Arch Med Sci 2013;9:172-176.
361. Collins R, Armitage J, Parish S, Sleight P, Peto R; Heart Protection Study Collaborative Group. Effects of cholesterollowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions.
Lancet 2004;363:757-767.
362. Goldstein LB, Amarenco P, Szarek M, Callahan A 3rd, Hennerici M, Sillesen H, et al. Hemorrhagic stroke in the stroke prevention by aggressive reduction in cholesterol levels study.
Neurology 2008;70(24 Pt 2):2364-2370.
363. Hosomi N, Nagai Y, Kohriyama T, Ohtsuki T, Aoki S, Nezu T, et al. The Japan statin treatment against recurrent stroke (JSTARS): a multicenter, randomized, open-label, parallel-group study.
EBioMedicine 2015;2:1071-1078.
364. Hosomi N, Kitagawa K, Nagai Y, Nakagawa Y, Aoki S, Nezu T, et al. Different influences of statin treatment in preventing at-risk stroke subtypes: a post hoc analysis of J-STARS.
J Atheroscler Thromb 2020;27:449-460.
365. Boxer AL, Kramer JH, Johnston K, Goldman J, Finley R, Miller BL. Executive dysfunction in hyperhomocystinemia responds to homocysteine-lowering treatment.
Neurology 2005;64:1431-1434.
366. Cavalieri M, Schmidt R, Chen C, Mok V, de Freitas GR, Song S, et al. B vitamins and magnetic resonance imaging-detected ischemic brain lesions in patients with recent transient ischemic attack or stroke: the VITAmins TO Prevent Stroke (VITATOPS) MRI-substudy.
Stroke 2012;43:3266-3270.
367. Fassbender K, Mielke O, Bertsch T, Nafe B, Fröschen S, Hennerici M. Homocysteine in cerebral macroangiography and microangiopathy.
Lancet 1999;353:1586-1587.
368. Weir DG, Scott JM. Brain function in the elderly: role of vitamin B12 and folate.
Br Med Bull 1999;55:669-682.
370. Ishida K, Messé SR. Antiplatelet strategies for secondary prevention of stroke and TIA.
Curr Atheroscler Rep 2014;16:449.
371. Ter Telgte A, van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, de Leeuw FE. Cerebral small vessel disease: from a focal to a global perspective.
Nat Rev Neurol 2018;14:387-398.
372. Huang N, Chen D, Wu X, Chen X, Zhang X, Niu J, et al. Aspirin promotes oligodendroglial differentiation through inhibition of Wnt signaling pathway.
Mol Neurobiol 2016;53:3258-3266.
373. Chen J, Zuo S, Wang J, Huang J, Zhang X, Liu Y, et al. Aspirin promotes oligodendrocyte precursor cell proliferation and differentiation after white matter lesion.
Front Aging Neurosci 2014;6:7.
374. Holcombe A, Ammann E, Espeland MA, Kelley BJ, Manson JE, Wallace R, et al. Chronic use of aspirin and total white matter lesion volume: results from the women’s health initiative memory study of magnetic resonance imaging study.
J Stroke Cerebrovasc Dis 2017;26:2128-2136.
376. Zheng SL, Roddick AJ. Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis.
JAMA 2019;321:277-287.
377. Shinohara Y, Katayama Y, Uchiyama S, Yamaguchi T, Handa S, Matsuoka K, et al. Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised noninferiority trial.
Lancet Neurol 2010;9:959-968.
378. Lin MP, Meschia JF, Gopal N, Barrett KM, Ross OA, Ertekin-Taner N, et al. Cilostazol versus aspirin for secondary stroke prevention: systematic review and meta-analysis.
J Stroke Cerebrovasc Dis 2021;30:105581.
380. Kim BC, Youn YC, Jeong JH, Han HJ, Kim JH, Lee JH, et al. Cilostazol versus aspirin on white matter changes in cerebral small vessel disease: a randomized controlled trial.
Stroke 2022;53:698-709.
382. Gons RA, van Norden AG, de Laat KF, van Oudheusden LJ, van Uden IW, Zwiers MP, et al. Cigarette smoking is associated with reduced microstructural integrity of cerebral white matter.
Brain 2011;134(Pt 7):2116-2124.
384. Makin SDJ, Mubki GF, Doubal FN, Shuler K, Staals J, Dennis MS, et al. Small vessel disease and dietary salt intake: cross-sectional study and systematic review.
J Stroke Cerebrovasc Dis 2017;26:3020-3028.
385. Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies.
BMJ 2009;339:b4567.
386. Del Brutto OH, Recalde BY, Mera RM. Dietary oily fish intake is inversely associated with severity of white matter hyperintensities of presumed vascular origin. A population-based study in frequent fish consumers of Amerindian ancestry.
J Stroke Cerebrovasc Dis 2021;30:105778.
387. Song S, Gaynor AM, Cruz E, Lee S, Gazes Y, Habeck C, et al. Mediterranean diet and white matter hyperintensity change over time in cognitively intact adults.
Nutrients 2022;14:3664.
388. Barnes LL, Dhana K, Liu X, Carey VJ, Ventrelle J, Johnson K, et al. Trial of the MIND diet for prevention of cognitive decline in older persons.
N Engl J Med 2023;389:602-611.
389. Venkatraman VK, Sanderson A, Cox KL, Ellis KA, Steward C, Phal PM, et al. Effect of a 24-month physical activity program on brain changes in older adults at risk of Alzheimer’s disease: the AIBL active trial.
Neurobiol Aging 2020;89:132-141.
390. Ho AJ, Raji CA, Becker JT, Lopez OL, Kuller LH, Hua X, et al. The effects of physical activity, education, and body mass index on the aging brain.
Hum Brain Mapp 2011;32:1371-1382.
391. Rosano C, Venkatraman VK, Guralnik J, Newman AB, Glynn NW, Launer L, et al. Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment.
J Gerontol A Biol Sci Med Sci 2010;65:639-647.
392. Willey JZ, Moon YP, Paik MC, Yoshita M, Decarli C, Sacco RL, et al. Lower prevalence of silent brain infarcts in the physically active: the northern Manhattan study.
Neurology 2011;76:2112-2118.
394. Sen A, Gider P, Cavalieri M, Freudenberger P, Farzi A, Schallert M, et al. Association of cardiorespiratory fitness and morphological brain changes in the elderly: results of the Austrian stroke prevention study.
Neurodegener Dis 2012;10:135-137.
395. Tseng BY, Gundapuneedi T, Khan MA, Diaz-Arrastia R, Levine BD, Lu H, et al. White matter integrity in physically fit older adults.
Neuroimage 2013;82:510-516.
396. Gow AJ, Bastin ME, Muñoz Maniega S, Valdés Hernández MC, Morris Z, Murray C, et al. Neuroprotective lifestyles and the aging brain: activity, atrophy, and white matter integrity.
Neurology 2012;79:1802-1808.
397. Torres ER, Strack EF, Fernandez CE, Tumey TA, Hitchcock ME. Physical activity and white matter hyperintensities: a systematic review of quantitative studies.
Prev Med Rep 2015;2:319-325.
398. Podewils LJ, Guallar E, Beauchamp N, Lyketsos CG, Kuller LH, Scheltens P. Physical activity and white matter lesion progression: assessment using MRI.
Neurology 2007;68:1223-1226.
399. Pan Y, Shen J, Cai X, Chen H, Zong G, Zhu W, et al. Adherence to a healthy lifestyle and brain structural imaging markers.
Eur J Epidemiol 2023;38:657-668.