1. Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome.
N Engl J Med 2009;360:1226-1237.
2. Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain.
Arch Neurol 1969;20:288-299.
3. Kang HS, Kim JH, Phi JH, Kim YY, Kim JE, Wang KC, et al. Plasma matrix metalloproteinases, cytokines and angiogenic factors in moyamoya disease.
J Neurol Neurosurg Psychiatry 2010;81:673-678.
4. Zhao S, Gong Z, Zhang J, Xu X, Liu P, Guan W, et al. Elevated serum microRNA Let-7c in moyamoya disease.
J Stroke Cerebrovasc Dis 2015;24:1709-1714.
5. Amano T, Inoha S, Wu CM, Matsushima T, Ikezaki K. Serum alpha1-antitrypsin level and phenotype associated with familial moyamoya disease.
Childs Nerv Syst 2003;19:655-658.
6. Fujimura M, Watanabe M, Narisawa A, Shimizu H, Tominaga T. Increased expression of serum matrix metalloproteinase-9 in patients with moyamoya disease.
Surg Neurol 2009;72:476-480.
7. Kim SK, Yoo JI, Cho BK, Hong SJ, Kim YK, Moon JA, et al. Elevation of CRABP-I in the cerebrospinal fluid of patients with moyamoya disease.
Stroke 2003;34:2835-2841.
8. Takahashi A, Sawamura Y, Houkin K, Kamiyama H, Abe H. The cerebrospinal fluid in patients with moyamoya disease (spontaneous occlusion of the circle of Willis) contains high level of basic fibroblast growth factor.
Neurosci Lett 1993;160:214-216.
9. Soriano SG, Cowan DB, Proctor MR, Scott RM. Levels of soluble adhesion molecules are elevated in the cerebrospinal fluid of children with moyamoya syndrome.
Neurosurgery 2002;50:544-549.
10. Ni G, Liu W, Huang X, Zhu S, Yue X, Chen Z, et al. Increased levels of circulating SDF-1alpha and CD34+ CXCR4+ cells in patients with moyamoya disease.
Eur J Neurol 2011;18:1304-1309.
11. Jung KH, Chu K, Lee ST, Park HK, Kim DH, Kim JH, et al. Circulating endothelial progenitor cells as a pathogenetic marker of moyamoya disease.
J Cereb Blood Flow Metab 2008;28:1795-1803.
12. Kang HS, Moon YJ, Kim YY, Park WY, Park AK, Wang KC, et al. Smooth-muscle progenitor cells isolated from patients with moyamoya disease: novel experimental cell model.
J Neurosurg 2014;120:415-425.
13. Fujimura M, Sonobe S, Nishijima Y, Niizuma K, Sakata H, Kure S, et al. Genetics and biomarkers of moyamoya disease: significance of
RNF213 as a susceptibility gene.
J Stroke 2014;16:65-72.
14. Kim JH, Jung JH, Phi JH, Kang HS, Kim JE, Chae JH, et al. Decreased level and defective function of circulating endothelial progenitor cells in children with moyamoya disease.
J Neurosci Res 2010;88:510-518.
15. Park JH, Jin YM, Hwang S, Cho DH, Kang DH, Jo I. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development.
Nitric Oxide 2013;32:36-42.
16. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol 2004;3:Article3.
17. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data.
Bioinformatics 2013;29:189-196.
18. García-Giménez JL, Sanchis-Gomar F, Lippi G, Mena S, Ivars D, Gomez-Cabrera MC, et al. Epigenetic biomarkers: a new perspective in laboratory diagnostics.
Clin Chim Acta 2012;413:1576-1582.
20. Zhong LY, Cayabyab FS, Tang CK, Zheng XL, Peng TH, Lv YC. Sortilin: a novel regulator in lipid metabolism and atherogenesis.
Clin Chim Acta 2016;460:11-17.
21. Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, et al.
SORT1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export.
Cell Metab 2010;12:213-223.
22. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via
SORT1 at the 1p13 cholesterol locus.
Nature 2010;466:714-719.
23. Linsel-Nitschke P, Heeren J, Aherrahrou Z, Bruse P, Gieger C, Illig T, et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease.
Atherosclerosis 2010;208:183-189.
24. Strong A. Sortilin as a novel regulator of plasma cholesterol, very-low density lipoprotein secretion and LDL catabolism [dissertation] Philadelphia (PA): University of Pennsylvania; 2012.
25. Calkin AC, Tontonoz P. Genome-wide association studies identify new targets in cardiovascular disease.
Sci Transl Med 2010;2:48ps46.
26. Nykjaer A, Willnow TE. Sortilin: a receptor to regulate neuronal viability and function.
Trends Neurosci 2012;35:261-270.
27. Mufson EJ, Wuu J, Counts SE, Nykjaer A. Preservation of cortical sortilin protein levels in MCI and Alzheimer’s disease.
Neurosci Lett 2010;471:129-133.
28. Finan GM, Okada H, Kim TW. BACE1 retrograde trafficking is uniquely regulated by the cytoplasmic domain of sortilin.
J Biol Chem 2011;286:12602-12616.
29. Distler JH, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O. Angiogenic and angiostatic factors in the molecular control of angiogenesis.
Q J Nucl Med 2003;47:149-161.
30. Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2.
Cold Spring Harb Perspect Med 2012;2:a006627.
31. Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization.
J Immunol 1998;161:6845-6852.
32. Hoshimaru M, Takahashi JA, Kikuchi H, Nagata I, Hatanaka M. Possible roles of basic fibroblast growth factor in the pathogenesis of moyamoya disease: an immunohistochemical study.
J Neurosurg 1991;75:267-270.