1. Feigin VL, Norrving B, Mensah GA. Global burden of stroke.
Circ Res 2017;120:439-448.
3. Gomes J, Wachsman AM. Types of stroke. In : Corrigan ML, Escuro AA, Kirby DF, editors. Handbook of Clinical Nutrition and Stroke New York, NY: Springer; 2013. p. 15-32.
4. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.
Lancet Neurol 2010;9:689-701.
5. Uiterwijk R, van Oostenbrugge RJ, Huijts M, De Leeuw PW, Kroon AA, Staals J. Total cerebral small vessel disease MRI score is associated with cognitive decline in executive function in patients with hypertension.
Front Aging Neurosci 2016;8:301.
8. Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease: systematic review and meta-analysis.
Neurobiol Aging 2009;30:337-352.
9. Fisher CM. Lacunar strokes and infarcts: a review.
Neurology 1982;32:871-876.
10. Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: a road map on key definitions and current concepts.
Int J Stroke 2016;11:6-18.
11. Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review.
J Clin Neurol 2011;7:1-9.
12. Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum.
J Neurol Neurosurg Psychiatry 2012;83:124-137.
13. Vinters HV. Cerebral amyloid angiopathy. A critical review.
Stroke 1987;18:311-324.
14. Love S, Miners S, Palmer J, Chalmers K, Kehoe P. Insights into the pathogenesis and pathogenicity of cerebral amyloid angiopathy.
Front Biosci (Landmark Ed) 2009;14:4778-4792.
15. Charidimou A, Jäger HR. Developing biomarkers for cerebral amyloid angiopathy trials: do potential disease phenotypes hold promise?
Lancet Neurol 2014;13:538-540.
16. Kirshner HS, Bradshaw M. The inflammatory form of cerebral amyloid angiopathy or “cerebral amyloid angiopathy-related inflammation” (CAARI).
Curr Neurol Neurosci Rep 2015;15:54.
17. Raposo N, Planton M, Péran P, Payoux P, Bonneville F, Lyoubi A, et al. Florbetapir imaging in cerebral amyloid angiopathyrelated hemorrhages.
Neurology 2017;89:697-704.
18. Thal DR, Ghebremedhin E, Rüb U, Yamaguchi H, Del Tredici K, Braak H. Two types of sporadic cerebral amyloid angiopathy.
J Neuropathol Exp Neurol 2002;61:282-293.
19. van Opstal AM, van Rooden S, van Harten T, Ghariq E, Labadie G, Fotiadis P, et al. Cerebrovascular function in presymptomatic and symptomatic individuals with hereditary cerebral amyloid angiopathy: a case-control study.
Lancet Neurol 2017;16:115-122.
20. Fotiadis P, van Rooden S, van der Grond J, Schultz A, Martinez-Ramirez S, Auriel E, et al. Cortical atrophy in patients with cerebral amyloid angiopathy: a case-control study.
Lancet Neurol 2016;15:811-819.
21. Lammie GA. Hypertensive cerebral small vessel disease and stroke.
Brain Pathol 2002;12:358-370.
22. Rosenblum WI. Cerebral hemorrhage produced by ruptured dissecting aneurysm in miliary aneurysm.
Ann Neurol 2003;54:376-378.
23. Caplan LR. Lacunar infarction and small vessel disease: pathology and pathophysiology.
J Stroke 2015;17:2-6.
24. Szpak GM, Lewandowska E, Wierzba-Bobrowicz T, Bertrand E, Pasennik E, Mendel T, et al. Small cerebral vessel disease in familial amyloid and non-amyloid angiopathies: FAD-PS-1 (P117L) mutation and CADASIL. Immunohistochemical and ultrastructural studies.
Folia Neuropathol 2007;45:192-204. Erratum in: Folia Neuropathol 2008;46:92.
25. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities.
Neurology 1993;43:1683-1689.
26. van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, Wokke JH, van Gijn J. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces.
Brain 1991;114(Pt 2):761-774.
27. Fisher CM. The arterial lesions underlying lacunes.
Acta Neuropathol 1968;12:1-15.
28. Müller K, Courtois G, Ursini MV, Schwaninger M. New insight Into the pathogenesis of cerebral small-vessel diseases.
Stroke 2017;48:520-527.
29. Choi JC. Genetics of cerebral small vessel disease.
J Stroke 2015;17:7-16.
30. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia.
Nature 1996;383:707-710.
31. Tikka S, Baumann M, Siitonen M, Pasanen P, Pöyhönen M, Myllykangas L, et al. CADASIL and CARASIL.
Brain Pathol 2014;24:525-544.
32. Iejima D, Itabashi T, Kawamura Y, Noda T, Yuasa S, Fukuda K, et al. HTRA1 (high temperature requirement A serine peptidase 1) gene is transcriptionally regulated by insertion/deletion nucleotides located at the 3’ end of the ARMS2 (agerelated maculopathy susceptibility 2) gene in patients with age-related macular degeneration.
J Biol Chem 2015;290:2784-2797.
33. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke.
N Engl J Med 2006;354:1489-1496.
34. Kolar GR, Kothari PH, Khanlou N, Jen JC, Schmidt RE, Vinters HV. Neuropathology and genetics of cerebroretinal vasculopathies.
Brain Pathol 2014;24:510-518.
35. Hsu TR, Niu DM. Fabry disease: review and experience during newborn screening.
Trends Cardiovasc Med 2018;28:274-281.
36. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging.
Lancet Neurol 2013;12:483-497.
37. Wardlaw JM, Sandercock PA, Dennis MS, Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia?
Stroke 2003;34:806-812.
38. Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review.
J Cereb Blood Flow Metab 2016;36:72-94.
39. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation.
Vascul Pharmacol 2002;38:323-337.
40. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease.
Pharmacol Rev 2005;57:173-185.
41. Zhang CE, Wong SM, van de Haar HJ, Staals J, Jansen JF, Jeukens CR, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease.
Neurology 2017;88:426-432.
42. Wardlaw JM, Doubal F, Armitage P, Chappell F, Carpenter T, Muñoz Maniega S, et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction.
Ann Neurol 2009;65:194-202.
43. Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis.
J Neurol Neurosurg Psychiatry 2010;81:192-197.
44. Huisa BN, Caprihan A, Thompson J, Prestopnik J, Qualls CR, Rosenberg GA. Long-term blood-brain barrier permeability changes in Binswanger disease.
Stroke 2015;46:2413-2418.
45. Wardlaw JM, Makin SJ, Valdés Hernández MC, Armitage PA, Heye AK, Chappell FM, et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study.
Alzheimers Dement 2017;13:634-643.
46. Ihara M, Yamamoto Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease.
Stroke 2016;47:554-560.
47. Rajani RM, Williams A. Endothelial cell-oligodendrocyte interactions in small vessel disease and aging.
Clin Sci (Lond) 2017;131:369-379.
48. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions.
Circ Res 2005;97:512-523.
49. Deplanque D, Lavallee PC, Labreuche J, Gongora-Rivera F, Jaramillo A, Brenner D, et al. Cerebral and extracerebral vasoreactivity in symptomatic lacunar stroke patients: a casecontrol study.
Int J Stroke 2013;8:413-421.
50. Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities.
Neurology 2008;71:804-811.
51. Markus HS, Hunt B, Palmer K, Enzinger C, Schmidt H, Schmidt R. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study.
Stroke 2005;36:1410-1414.
52. van Dijk EJ, Prins ND, Vermeer SE, Vrooman HA, Hofman A, Koudstaal PJ, et al. C-reactive protein and cerebral small-vessel disease: the Rotterdam Scan Study.
Circulation 2005;112:900-905.
53. Fornage M, Chiang YA, O’Meara ES, Psaty BM, Reiner AP, Siscovick DS, et al. Biomarkers of inflammation and MRI-defined small vessel disease of the brain: the cardiovascular health study.
Stroke 2008;39:1952-1959.
54. Satizabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C. Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon Study.
Neurology 2012;78:720-727.
55. Notsu Y, Nabika T, Bokura H, Suyama Y, Kobayashi S, Yamaguchi S, et al. Evaluation of asymmetric dimethylarginine and homocysteine in microangiopathy-related cerebral damage.
Am J Hypertens 2009;22:257-262.
56. Pikula A, Böger RH, Beiser AS, Maas R, DeCarli C, Schwedhelm E, et al. Association of plasma ADMA levels with MRI markers of vascular brain injury: Framingham offspring study.
Stroke 2009;40:2959-2964.
57. Kim Y, Kim YK, Kim NK, Kim SH, Kim OJ, Oh SH. Circulating matrix metalloproteinase-9 level is associated with cerebral white matter hyperintensities in non-stroke individuals.
Eur Neurol 2014;72:234-240.
58. Rouhl RP, Damoiseaux JG, Lodder J, Theunissen RO, Knottnerus IL, Staals J, et al. Vascular inflammation in cerebral small vessel disease.
Neurobiol Aging 2012;33:1800-1806.
59. Rufa A, Blardi P, De Lalla A, Cevenini G, De Stefano N, Zicari E, et al. Plasma levels of asymmetric dimethylarginine in cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy.
Cerebrovasc Dis 2008;26:636-640.
60. Pescini F, Cesari F, Giusti B, Sarti C, Zicari E, Bianchi S, et al. Bone marrow-derived progenitor cells in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.
Stroke 2010;41:218-223.
61. Vermeer SE, van Dijk EJ, Koudstaal PJ, Oudkerk M, Hofman A, Clarke R, et al. Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam Scan Study.
Ann Neurol 2002;51:285-289.
62. Kloppenborg RP, Nederkoorn PJ, van der Graaf Y, Geerlings MI. Homocysteine and cerebral small vessel disease in patients with symptomatic atherosclerotic disease. The SMARTMR study.
Atherosclerosis 2011;216:461-466.
63. Sachdev P, Parslow R, Salonikas C, Lux O, Wen W, Kumar R, et al. Homocysteine and the brain in midadult life: evidence for an increased risk of leukoaraiosis in men.
Arch Neurol 2004;61:1369-1376.
64. Aono Y, Ohkubo T, Kikuya M, Hara A, Kondo T, Obara T, et al. Plasma fibrinogen, ambulatory blood pressure, and silent cerebrovascular lesions: the Ohasama study.
Arterioscler Thromb Vasc Biol 2007;27:963-968.
65. Bridges LR, Andoh J, Lawrence AJ, Khoong CHL, Poon W, Esiri MM, et al. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people.
J Neuropathol Exp Neurol 2014;73:1026-1033.
66. Knottnerus IL, Winckers K, Ten Cate H, Hackeng TM, Lodder J, Rouhl RP, et al. Levels of heparin-releasable TFPI are increased in first-ever lacunar stroke patients.
Neurology 2012;78:493-498.
67. Kario K, Matsuo T, Kobayashi H, Hoshide S, Shimada K. Hyperinsulinemia and hemostatic abnormalities are associated with silent lacunar cerebral infarcts in elderly hypertensive subjects.
J Am Coll Cardiol 2001;37:871-877.
68. Simpson JE, Fernando MS, Clark L, Ince PG, Matthews F, Forster G, et al. White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses.
Neuropathol Appl Neurobiol 2007;33:410-419.
69. Skoog I, Wallin A, Fredman P, Hesse C, Aevarsson O, Karlsson I, et al. A population study on blood-brain barrier function in 85-year-olds: relation to Alzheimer’s disease and vascular dementia.
Neurology 1998;50:966-971.
70. Pantoni L, Inzitari D, Pracucci G, Lolli F, Giordano G, Bracco L, et al. Cerebrospinal fluid proteins in patients with leucoaraiosis: possible abnormalities in blood-brain barrier function.
J Neurol Sci 1993;115:125-131.
71. Vogels SC, Emmelot-Vonk MH, Verhaar HJ, Koek HL. The association of chronic kidney disease with brain lesions on MRI or CT: a systematic review.
Maturitas 2012;71:331-336.
72. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms.
J Am Soc Nephrol 2006;17:2106-2111.
73. Georgakis MK, Chatzopoulou D, Tsivgoulis G, Petridou ET. Albuminuria and cerebral small vessel disease: a systematic review and meta-analysis.
J Am Geriatr Soc 2018;66:509-517.
74. Gattringer T, Pinter D, Enzinger C, Seifert-Held T, Kneihsl M, Fandler S, et al. Serum neurofilament light is sensitive to active cerebral small vessel disease.
Neurology 2017;89:2108-2114.
75. Rannikmäe K, Davies G, Thomson PA, Bevan S, Devan WJ, Falcone GJ, et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease.
Neurology 2015;84:918-926.
76. Rajashekhar G, Willuweit A, Patterson CE, Sun P, Hilbig A, Breier G, et al. Continuous endothelial cell activation increases angiogenesis: evidence for the direct role of endothelium linking angiogenesis and inflammation.
J Vasc Res 2006;43:193-204.
77. Laurent S, Briet M, Boutouyrie P. Large and small artery crosstalk and recent morbidity-mortality trials in hypertension.
Hypertension 2009;54:388-392.
78. Bailey EL, Smith C, Sudlow CL, Wardlaw JM. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review.
Int J Stroke 2011;6:434-444.
79. Khan U, Porteous L, Hassan A, Markus HS. Risk factor profile of cerebral small vessel disease and its subtypes.
J Neurol Neurosurg Psychiatry 2007;78:702-706.
80. Boulouis G, Charidimou A, Auriel E, Haley KE, van Etten ES, Fotiadis P, et al. Intracranial atherosclerosis and cerebral small vessel disease in intracerebral hemorrhage patients.
J Neurol Sci 2016;369:324-329.
81. Brisset M, Boutouyrie P, Pico F, Zhu Y, Zureik M, Schilling S, et al. Large-vessel correlates of cerebral small-vessel disease.
Neurology 2013;80:662-669.
82. Aribisala BS, Morris Z, Eadie E, Thomas A, Gow A, Valdés Hernández MC, et al. Blood pressure, internal carotid artery flow parameters, and age-related white matter hyperintensities.
Hypertension 2014;63:1011-1018.
83. Hattori Y, Okamoto Y, Maki T, Yamamoto Y, Oishi N, Yamahara K, et al. Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase.
Stroke 2014;45:3403-3411.
84. Kitamura A, Saito S, Maki T, Oishi N, Ayaki T, Hattori Y, et al. Gradual cerebral hypoperfusion in spontaneously hypertensive rats induces slowly evolving white matter abnormalities and impairs working memory.
J Cereb Blood Flow Metab 2016;36:1592-1602.
85. Poels MM, Zaccai K, Verwoert GC, Vernooij MW, Hofman A, van der Lugt A, et al. Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study.
Stroke 2012;43:2637-2642.
86. Huang X, Kang X, Xue J, Kang C, Lv H, Li Z. Evaluation of carotid artery elasticity changes in patients with cerebral small vessel disease.
Int J Clin Exp Med 2015;8:18825-18830.
87. Vermeer SE, Longstreth WT Jr, Koudstaal PJ. Silent brain infarcts: a systematic review.
Lancet Neurol 2007;6:611-619.
88. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.
Lancet Neurol 2013;12:822-838.
89. Norrving B. Evolving concept of small vessel disease through advanced brain imaging.
J Stroke 2015;17:94-100.
90. Staals J, Makin SD, Doubal FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden.
Neurology 2014;83:1228-1234.
91. Lyoubi-Idrissi AL, Jouvent E, Poupon C, Chabriat H. Diffusion magnetic resonance imaging in cerebral small vessel disease.
Rev Neurol (Paris) 2017;173:201-210.
92. Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: a systematic critical update.
Neuroimage Clin 2017;15:247-263.
93. Klarenbeek P, van Oostenbrugge RJ, Rouhl RP, Knottnerus IL, Staals J. Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease.
Stroke 2013;44:2995-2999.
94. Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review.
Neural Comput 2017;29:2352-2449.
95. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis.
Med Image Anal 2017;42:60-88.
96. Shi Z, He L, Suzuki K, Nakamura T, Itoh H. Survey on neural networks used for medical image processing.
Int J Comput Sci 2009;3:86-100.
97. Shen D, Wu G, Zhang D, Suzuki K, Wang F, Yan P. Machine learning in medical imaging.
Comput Med Imaging Graph 2015;41:1-2.
98. Araki T, Jain PK, Suri HS, Londhe ND, Ikeda N, El-Baz A, et al. Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm.
Comput Biol Med 2017;80:77-96.
99. Saba L, Jain PK, Suri HS, Ikeda N, Araki T, Singh BK, et al. Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA learning paradigm.
J Med Syst 2017;41:98.
100. Lambert C, Sam Narean J, Benjamin P, Zeestraten E, Barrick TR, Markus HS. Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease.
Neuroimage Clin 2015;9:194-205.
101. Ciulli S, Citi L, Salvadori E, Valenti R, Poggesi A, Inzitari D, et al. Prediction of impaired performance in trail making test in MCI patients with small vessel disease using DTI data.
IEEE J Biomed Health Inform 2016;20:1026-1033.
102. González-Castro V, Valdés Hernández MDC, Chappell FM, Armitage PA, Makin S, Wardlaw JM. Reliability of an automatic classifier for brain enlarged perivascular spaces burden and comparison with human performance.
Clin Sci (Lond) 2017;131:1465-1481.
103. Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification.
Comput Methods Programs Biomed 2017;150:9-22.
104. Kuppili V, Biswas M, Sreekumar A, Suri HS, Saba L, Edla DR, et al. Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization.
J Med Syst 2017;41:152.
105. Than JCM, Saba L, Noor NM, Rijal OM, Kassim RM, Yunus A, et al. Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework.
Comput Biol Med 2017;89:197-211.
106. Takeuchi M, Inuzuka R, Hayashi T, Shindo T, Hirata Y, Shimizu N, et al. Novel risk assessment tool for immunoglobulin resistance in Kawasaki disease: application using a random forest classifier.
Pediatr Infect Dis J 2017;36:821-826.
107. Tay D, Poh CL, Kitney RI. A novel neural-inspired learning algorithm with application to clinical risk prediction.
J Biomed Inform 2015;54:305-314.
108. Papageorgiou EI, Jayashree S, Karmegam A, Papandrianos N. A risk management model for familial breast cancer: a new application using Fuzzy Cognitive Map method.
Comput Methods Programs Biomed 2015;122:123-135.
109. Khalifa A, Meystre S. Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes.
J Biomed Inform 2015;58 Suppl:S128-S132.
110. Modinos G, Pettersson-Yeo W, Allen P, McGuire PK, Aleman A, Mechelli A. Multivariate pattern classification reveals differential brain activation during emotional processing in individuals with psychosis proneness.
Neuroimage 2012;59:3033-3041.
111. Lin HC, Su CT, Wang PC. An application of artificial immune recognition system for prediction of diabetes following gestational diabetes.
J Med Syst 2011;35:283-289.
112. Kurz DJ, Bernstein A, Hunt K, Radovanovic D, Erne P, Siudak Z, et al. Simple point-of-care risk stratification in acute coronary syndromes: the AMIS model.
Heart 2009;95:662-668.
113. LeCun Y, Bengio Y, Hinton G. Deep learning.
Nature 2015;521:436-444.
114. Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA, Adler DD, et al. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images.
IEEE Trans Med Imaging 1996;15:598-610.
115. Ghafoorian M, Karssemeijer N, Heskes T, Bergkamp M, Wissink J, Obels J, et al. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin.
Neuroimage Clin 2017;14:391-399.
117. Cai Z, Wang C, He W, Tu H, Tang Z, Xiao M, et al. Cerebral small vessel disease and Alzheimer’s disease.
Clin Interv Aging 2015;10:1695-1704.
118. Kandimalla RJ, Prabhakar S, Binukumar BK, Wani WY, Gupta N, Sharma DR, et al. Apo-E4 allele in conjunction with Abeta42 and tau in CSF: biomarker for Alzheimer’s disease.
Curr Alzheimer Res 2011;8:187-196.
119. Gurol ME, Irizarry MC, Smith EE, Raju S, Diaz-Arrastia R, Bottiglieri T, et al. Plasma beta-amyloid and white matter lesions in AD, MCI, and cerebral amyloid angiopathy.
Neurology 2006;66:23-29.
120. Nakata-Kudo Y, Mizuno T, Yamada K, Shiga K, Yoshikawa K, Mori S, et al. Microbleeds in Alzheimer disease are more related to cerebral amyloid angiopathy than cerebrovascular disease.
Dement Geriatr Cogn Disord 2006;22:8-14.
121. Goos JD, Teunissen CE, Veerhuis R, Verwey NA, Barkhof F, Blankenstein MA, et al. Microbleeds relate to altered amyloid-beta metabolism in Alzheimer’s disease.
Neurobiol Aging 2012;33:1011.e1-1011.e9.
122. Brundel M, Heringa SM, de Bresser J, Koek HL, Zwanenburg JJ, Jaap Kappelle L, et al. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease.
J Alzheimers Dis 2012;31:259-263.
123. Guo H, Song X, Vandorpe R, Zhang Y, Chen W, Zhang N, et al. Evaluation of common structural brain changes in aging and Alzheimer disease with the use of an MRI-based brain atrophy and lesion index: a comparison between T1WI and T2WI at 1.5T and 3T.
AJNR Am J Neuroradiol 2014;35:504-512.
124. Aribisala BS, Valdés Hernández MC, Royle NA, Morris Z, Muñoz Maniega S, Bastin ME, et al. Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936.
Eur Radiol 2013;23:1084-1092.
125. Kovacic JC, Fuster V. Atherosclerotic risk factors, vascular cognitive impairment, and Alzheimer disease.
Mt Sinai J Med 2012;79:664-673.
126. Kester MI, Goos JD, Teunissen CE, Benedictus MR, Bouwman FH, Wattjes MP, et al. Associations between cerebral small-vessel disease and Alzheimer disease pathology as measured by cerebrospinal fluid biomarkers.
JAMA Neurol 2014;71:855-862.
127. Nestor SM, Mišić B, Ramirez J, Zhao J, Graham SJ, Verhoeff N, et al. Small vessel disease is linked to disrupted structural network covariance in Alzheimer’s disease.
Alzheimers Dement 2017;13:749-760.
128. Tai SY, Chen CH, Chien CY, Yang YH. Cilostazol as an add-on therapy for patients with Alzheimer’s disease in Taiwan: a case control study.
BMC Neurol 2017;17:40.
129. Song IU, Lee JE, Kwon DY, Park JH, Ma HI. Parkinson’s disease might increase the risk of cerebral ischemic lesions.
Int J Med Sci 2017;14:319-322.
130. de Laat KF, van Norden AG, Gons RA, van Uden IW, Zwiers MP, Bloem BR, et al. Cerebral white matter lesions and lacunar infarcts contribute to the presence of mild parkinsonian signs.
Stroke 2012;43:2574-2579.
131. van der Holst HM, van Uden IW, Tuladhar AM, de Laat KF, van Norden AG, Norris DG, et al. Cerebral small vessel disease and incident parkinsonism: the RUN DMC study.
Neurology 2015;85:1569-1577.
132. Hatate J, Miwa K, Matsumoto M, Sasaki T, Yagita Y, Sakaguchi M, et al. Association between cerebral small vessel diseases and mild parkinsonian signs in the elderly with vascular risk factors.
Parkinsonism Relat Disord 2016;26:29-34.
133. Pavlović AM, Pekmezović T, Jovanović Z, Medjedović TS, Veselinović N, Norton MC, et al. Transcranial parenchymal sonographic findings in patients with cerebral small vessel disease: a preliminary study.
J Ultrasound Med 2015;34:1853-1859.
134. Pantoni L, Poggesi A, Inzitari D. The relation between whitematter lesions and cognition.
Curr Opin Neurol 2007;20:390-397.
135. Carey CL, Kramer JH, Josephson SA, Mungas D, Reed BR, Schuff N, et al. Subcortical lacunes are associated with executive dysfunction in cognitively normal elderly.
Stroke 2008;39:397-402.
136. Pavlovic AM, Pekmezovic T, Tomic G, Trajkovic JZ, Sternic N. Baseline predictors of cognitive decline in patients with cerebral small vessel disease.
J Alzheimers Dis 2014;42 Suppl 3:S37-S43.
137. Xu X, Hilal S, Collinson SL, Chong EJ, Ikram MK, Venketasubramanian N, et al. Association of magnetic resonance imaging markers of cerebrovascular disease burden and cognition.
Stroke 2015;46:2808-2814.
138. Biesbroek JM, Weaver NA, Biessels GJ. Lesion location and cognitive impact of cerebral small vessel disease.
Clin Sci (Lond) 2017;131:715-728.
139. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association.
Stroke 2011;42:2672-2713.
140. Miwa K, Tanaka M, Okazaki S, Yagita Y, Sakaguchi M, Mochizuki H, et al. Multiple or mixed cerebral microbleeds and dementia in patients with vascular risk factors.
Neurology 2014;83:646-653.
141. Chen A, Akinyemi RO, Hase Y, Firbank MJ, Ndung’u MN, Foster V, et al. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and poststroke dementia.
Brain 2016;139(Pt 1):242-258.
142. Miwa K, Tanaka M, Okazaki S, Yagita Y, Sakaguchi M, Mochizuki H, et al. Increased total homocysteine levels predict the risk of incident dementia independent of cerebral smallvessel diseases and vascular risk factors.
J Alzheimers Dis 2016;49:503-513.
143. van Sloten TT, Sigurdsson S, van Buchem MA, Phillips CL, Jonsson PV, Ding J, et al. Cerebral small vessel disease and association with higher incidence of depressive symptoms in a general elderly population: the AGES-Reykjavik study.
Am J Psychiatry 2015;172:570-578.
144. Pasi M, Boulouis G, Fotiadis P, Auriel E, Charidimou A, Haley K, et al. Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease.
Neurology 2017;88:2162-2168.
145. Pasi M, Poggesi A, Salvadori E, Diciotti S, Ciolli L, Del Bene A, et al. White matter microstructural damage and depressive symptoms in patients with mild cognitive impairment and cerebral small vessel disease: the VMCI-Tuscany study.
Int J Geriatr Psychiatry 2016;31:611-618.
146. Maxwell H, Hanby M, Parkes LM, Gibson LM, Coutinho C, Emsley HC. Prevalence and subtypes of radiological cerebrovascular disease in late-onset isolated seizures and epilepsy.
Clin Neurol Neurosurg 2013;115:591-596.
147. De Reuck J, Nagy E, Van Maele G. Seizures and epilepsy in patients with lacunar strokes.
J Neurol Sci 2007;263:75-78.
148. Russo E, Leo A, Scicchitano F, Donato A, Ferlazzo E, Gasparini S, et al. Cerebral small vessel disease predisposes to temporal lobe epilepsy in spontaneously hypertensive rats.
Brain Res Bull 2017;130:245-250.
149. van der Holst HM, van Uden IW, Tuladhar AM, de Laat KF, van Norden AG, Norris DG, et al. Factors associated with 8-year mortality in older patients with cerebral small vessel disease: the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) study.
JAMA Neurol 2016;73:402-409.
150. Lieb JM, Stippich C, Ahlhelm FJ. Normal pressure hydrocephalus.
Radiologe 2015;55:389-396.
151. Kuriyama N, Miyajima M, Nakajima M, Kurosawa M, Fukushima W, Watanabe Y, et al. Nationwide hospital-based survey of idiopathic normal pressure hydrocephalus in Japan: epidemiological and clinical characteristics.
Brain Behav 2017;7:e00635.
152. Starr JM, Leaper SA, Murray AD, Lemmon HA, Staff RT, Deary IJ, et al. Brain white matter lesions detected by magnetic resonance [correction of resosnance] imaging are associated with balance and gait speed.
J Neurol Neurosurg Psychiatry 2003;74:94-98.
153. de Laat KF, van den Berg HA, van Norden AG, Gons RA, Olde Rikkert MG, de Leeuw FE. Microbleeds are independently related to gait disturbances in elderly individuals with cerebral small vessel disease.
Stroke 2011;42:494-497.
154. Zhang X, Xie Y, Ding C, Xiao J, Tang Y, Jiang X, et al. Subclinical hypothyroidism and risk of cerebral small vessel disease: a hospital-based observational study.
Clin Endocrinol (Oxf) 2017;87:581-586.
155. Morgello S, Murray J, Van Der Elst S, Byrd D. HCV, but not HIV, is a risk factor for cerebral small vessel disease.
Neurol Neuroimmunol Neuroinflamm 2014;1:e27.
156. Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, Triant VA. Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a US health care system.
J Acquir Immune Defic Syndr 2012;60:351-358.
157. Rasmussen LD, Engsig FN, Christensen H, Gerstoft J, Kronborg G, Pedersen C, et al. Risk of cerebrovascular events in persons with and without HIV: a Danish nationwide population-based cohort study.
AIDS 2011;25:1637-1646.
158. Worm SW, Sabin C, Weber R, Reiss P, El-Sadr W, Dabis F, et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study.
J Infect Dis 2010;201:318-330.
159. Soontornniyomkij V, Umlauf A, Chung SA, Cochran ML, Soontornniyomkij B, Gouaux B, et al. HIV protease inhibitor exposure predicts cerebral small vessel disease.
AIDS 2014;28:1297-1306.
160. McMurtray A, Nakamoto B, Shikuma C, Valcour V. Smallvessel vascular disease in human immunodeficiency virus infection: the Hawaii aging with HIV cohort study.
Cerebrovasc Dis 2007;24:236-241.
161. Cho KH, Kim CK, Woo SJ, Park KH, Park SJ. Cerebral small vessel disease in branch retinal artery occlusion.
Invest Ophthalmol Vis Sci 2016;57:5818-5824.