1. Heron M. Deaths: leading causes for 2004. Natl Vital Stat Rep 2007;56:1-96.
2. Centers for Disease Control and Prevention (CDC). Prevalence of disabilities and associated health conditions among adults--United Sstates, 1999. Morb Mortal Wkly Rep 2001;50:120-125.
3. World Health Organization. The World health report 2004: changing history Geneva: World Health Organization; 2004.
4. Mukherjee D, Patil CG. Epidemiology and the global burden of stroke.
World Neurosurg 2011;76(6 Suppl):S85-S90.
5. Beal CC. Gender and stroke symptoms: a review of the current literature.
J Neurosci Nurs 2010;42:80-87.
6. Hatano S. Experience from a multicentre stroke register: a preliminary report.
Bull World Health Organ 1976;54:541-543.
7. Murphy TH, Li P, Betts K, Liu R. Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines.
J Neurosci 2008;28:1756-1772.
8. Hossmann KA. Pathophysiology and therapy of experimental stroke.
Cell Mol Neurobiol 2006;26:1055-1081.
9. Besancon E, Guo S, Lok J, Tymianski M, Lo EH. Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke.
Trends Pharmacol Sci 2008;29:268-275.
10. Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review.
Stroke 2006;37:1334-1339.
11. Baron JC. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment.
Cerebrovasc Dis 1999;9:193-201.
12. Jung S, Gilgen M, Slotboom J, El-Koussy M, Zubler C, Kiefer C, et al. Factors that determine penumbral tissue loss in acute ischaemic stroke.
Brain 2013;136(Pt 12):3554-3560.
13. Bretón RR, Rodríguez JCG. Excitotoxicity and oxidative stress in acute ischemic stroke. In : Rodriguez JCG, editor. Acute Ischemic Stroke Croatia/China: InTech; 2012.
14. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia.
J Neurosci 2007;27:4253-4260.
15. Xu L, Emery JF, Ouyang YB, Voloboueva LA, Giffard RG. Astrocyte targeted overexpression of HSP72 or SOD2 reduces neuronal vulnerability to forebrain ischemia.
Glia 2010;58:1042-1049.
16. Liu J. Control of protein synthesis and mRNA degradation by microRNAs.
Curr Opin Cell Biol 2008;20:214-221.
17. Mocellin S, Pasquali S, Pilati P. Oncomirs: from tumor biology to molecularly targeted anticancer strategies.
Mini Rev Med Chem 2009;9:70-80.
18. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223.
Nature 2008;451:1125-1129.
19. Aumiller V, Förstemann K. Roles of microRNAs beyond development--metabolism and neural plasticity.
Biochim Biophys Acta 2008;1779:692-696.
20. Bushati N, Cohen SM. MicroRNAs in neurodegeneration.
Curr Opin Cell Biol 2008;18:292-296.
21. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell 2004;116:281-297.
22. Bourassa MW, Ratan RR. The interplay between microRNAs and histone deacetylases in neurological diseases.
Neurochem Int 2014;77:33-39.
23. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization.
EMBO J 2002;21:4663-4670.
25. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing.
Genes Dev 2004;18:3016-3027.
26. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.
Science 2001;294:858-862.
27. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.
Science 2001;293:834-838.
29. Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion.
Stroke 2008;39:959-966.
30. Redell JB, Liu Y, Dash PK. Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes.
J Neurosci Res 2009;87:1435-1448.
31. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome.
J Cereb Blood Flow Metab 2009;29:675-687.
32. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures.
J Cereb Blood Flow Metab 2010;30:92-101.
33. Cucchiara B, Nyquist P. Blood markers in tia: array of hope?
Neurology 2011;77:1716-1717.
34. Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J. Circulating microRNAs: novel biomarkers for cardiovascular diseases.
J Mol Med (Berl) 2012;90:865-875.
35. Jickling GC, Sharp FR. Blood biomarkers of ischemic stroke.
Neurotherapeutics 2011;8:349-360.
36. Zhan X, Jickling GC, Tian Y, Stamova B, Xu H, Ander B, et al. Transient ischemic attacks characterized by RNA profiles in blood.
Neurology 2011;77:1718-1724.
37. Ly JV, Zavala JA, Donnan GA. Neuroprotection and thrombolysis: combination therapy in acute ischaemic stroke.
Exp Opin Pharmacother 2006;7:1571-1581.
38. Krnjević K. Electrophysiology of cerebral ischemia.
Neuropharmacology 2008;55:319-333.
39. Pizzi M, Fallacara C, Arrighi V, Memo M, Spano P. Attenuation of excitatory amino acid toxicity by metabotropic glutamate receptor agonists and aniracetam in primary cultures of cerebellar granule cells.
J Neurochem 1993;61:683-689.
40. Mosbacher J, Schopfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP. A molecular determinant for submillisecond desensitization in glutamate receptors.
Science 1994;266:1059-1062.
41. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor.
Nature 1991;354:31-37.
42. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics.
Brain Res Rev 2007;54:34-66.
43. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shutoff and cell death pathways.
Nat Neurosci 2002;5:405-414.
44. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo.
J Neurosci 2007;27:2846-2857.
45. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, et al. Dapk1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke.
Cell 2010;140:222-234.
46. Martin HG, Wang YT. Blocking the deadly effects of the NMDA receptor in stroke.
Cell 2010;140:174-176.
47. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95.
Nat Med 2010;16:1439-1443.
48. Lai TW, Shyu WC, Wang YT. Stroke intervention pathways: NMDA receptors and beyond.
Trends Mol Med 2011;17:266-275.
49. Jeyaseelan K, Lim KY, Armugam A. Neuroprotectants in stroke therapy.
Exp Opin Pharmacother 2008;9:887-900.
50. Yang ZB, Zhang Z, Li TB, Lou Z, Li SY, Yang H, et al. Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke.
Clin Sci (Lond) 2014;127:679-689.
51. Fang Q, Hu WW, Wang XF, Yang Y, Lou GD, Jin MM, et al. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury.
Neuropharmacology 2014;77:156-166.
52. Ouyang YB, Xu L, Lu Y, Sun X, Yue S, Xiong XX, et al. Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia.
Glia 2013;61:1784-1794.
53. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. MicroRNA-223 is neuroprotective by targeting glutamate receptors.
Proc Natl Acad Sci U S A 2012;109:18962-18967.
54. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132.
Neuron 2010;65:373-384.
55. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury.
J Neurosci 2004;24:1245-1254.
56. Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites.
J Neurosci 2009;29:1719-1734.
57. Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke.
J Neurosci 2007;27:4101-4109.
58. Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex.
Exp Neur 2005;193:291-311.
59. Beckman KB, Ames BN. Mitochondrial aging: open questions.
Ann N Y Acad Sci 1998;854:118-127.
60. Guzik T, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation.
J Physiol Pharmacol 2003;54:469-487.
61. Cherubini A, Ruggiero C, Polidori MC, Mecocci P. Potential markers of oxidative stress in stroke.
Free Radical Bio Med 2005;39:841-852.
62. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders.
Science 1993;262:689-695.
63. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury.
Pharmacol Rev 2001;53:135-159.
64. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity.
Nature 1993;364:535-537.
65. Piantadosi CA, Zhang J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat.
Stroke 1996;27:327-331. ; discussion 332.
66. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurological disorders.
N Engl J Med 1995;330:613-622.
67. Chan PH. Role of oxidants in ischemic brain damage.
Stroke 1996;27:1124-1129.
68. Saeed SA, Shad KF, Saleem T, Javed F, Khan MU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke.
Exp Brain Res 2007;182:1-10.
69. Gariballa SE, Hutchin TP, Sinclair AJ. Antioxidant capacity after acute ischaemic stroke.
QJM 2002;95:685-690.
70. Spranger M, Krempien S, Schwab S, Donneberg S, Hacke W. Superoxide dismutase activity in serum of patients with acute cerebral ischemic injury. Correlation with clinical course and infarct size.
Stroke 1997;28:2425-2428.
71. Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke.
J Physiol 2011;589:4125-4136.
72. Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke.
Free Radical Bio Med 2005;39:429-443.
73. Zhang C, Shu L, Kong AN. MicroRNAs: new players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways.
Curr Pharmacol Rep 2015;1:21-30.
74. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration.
Ann N Y Acad Sci 2008;1147:61-69.
75. Dang J, Brandenburg LO, Rosen C, Fragoulis A, Kipp M, Pufe T, et al. Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats.
J Mol Neurosci 2012;46:578-584.
76. Papp D, Lenti K, Módos D, Fazekas D, Dúl Z, Türei D, et al. The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops.
FEBS Lett 2012;586:1795-1802.
77. Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress.
Stroke 2015;46:513-519.
78. Wang P, Liang X, Lu Y, Zhao X, Liang J. MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway.
Neurochem Res 2016;41:2627-2635.
79. Jiang S, Deng C, Lv J, Fan C, Hu W, Di S, et al. Nrf2 weaves an elaborate network of neuroprotection against stroke.
Mol Neurobiol 2016;54:1440-1455.
81. Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, et al. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders.
Mol Autism 2013;4:30.
82. Mravec B. The role of the vagus nerve in stroke.
Auton Neurosci 2010;158:8-12.
83. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C. miR-210 mediates vagus nerve stimulation-induced antioxidant stress and antiapoptosis reactions following cerebral ischemia/reperfusion injury in rats.
J Neurochem 2015;134:173-181.
84. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, et al. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress.
Mol Neurobiol 2016;Mar. 29. [Epub]
http://dx.doi.org/10.1007/s12035-016-9842-1.
85. Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion.
Brain Res 2014;1592:65-72.
86. Tomimoto H, Akiguchi I, Wakita H, Lin JX, Budka H. Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans.
Acta Neuropathol 2000;99:26-30.
87. Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, et al. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells.
Exp Cell Res 2009;315:1439-1447.
88. Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response.
PLoS One 2012;7:e44789.
89. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments.
Neuron 2010;67:181-198.
90. Chamorro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease.
Stroke 2006;37:291-293.
91. McColl B, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke.
Neuroscience 2009;158:1049-1061.
93. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators.
FEBS J 2009;276:13-26.
94. Kriz J. Inflammation in ischemic brain injury: timing is important.
Crit Rev Neurobiol 2006;18:145-157.
95. Stanimirovic DB, Wong J, Shapiro A, Durkin JP. Increase in surface expression of ICAM-1, VCAM-1 and e-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults.
Acta Neurochir Suppl 1997;70:12-16.
96. Becker K. Inflammation and acute stroke.
Curr Opin Neurol 1998;11:45-49.
97. Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin.
Stroke 2005;36:2718-2724.
98. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain.
Proc Natl Acad Sci U S A 2003;100:13632-13637.
99. Griffin WS, Sheng JG, Gentleman SM, Graham DI, Mrak RE, Roberts GW. Microglial interleukin-l alpha expression in human head injury: correlations with neuronal and neuritic beta-amyloid precursor protein expression.
Neurosci Lett 1994;176:133-136.
100. Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration.
Neurobiol Aging 2005;26:349-354.
101. Eikelenboom P, Rozemuller AJ, Hoozemans JJ, Veerhuis R, van Gool WA. Neuroinflammation and Alzheimer disease: clinical and therapeutic implications.
Alzheimer Dis Assoc Dis 2000;14 Suppl 1:S54-S61.
102. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells.
J Leukoc Biol 2010;87:779-789.
103. Morganti-Kossman M, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, et al. Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue.
Mol Psychiatry 1997;2:133-136.
104. Luna JM, Moon YP, Liu KM, Spitalnik S, Paik MC, Cheung K, et al. High-sensitivity C-reactive protein and interleukin-6-dominant inflammation and ischemic stroke risk: the Northern Manhattan study.
Stroke 2014;45:979-987.
105. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease.
Br J Pharmacol 2006;147 Suppl 1:S232-S240.
106. Pena-Philippides JC, Yang Y, Bragina O, Hagberg S, Nemoto E, Roitbak T. Effect of pulsed electromagnetic field (PEMF) on infarct size and inflammation after cerebral ischemia in mice.
Transl Stroke Res 2014;5:491-500.
107. Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke.
Neurol Res 2008;30:783-793.
108. Ferrarese C, Mascarucci P, Zoia C, Cavarretta R, Frigo M, Begni B, et al. Increased cytokine release from peripheral blood cells after acute stroke.
J Cereb Blood Flow Metab 1999;19:1004-1009.
109. Han HS, Yenari MA. Cellular targets of brain inflammation in stroke.
Curr Opin Investig Drugs 2003;4:522-529.
110. Baeuerle PA, Henkel T. Function and activation of NF-kappa b in the immune system.
Annu Rev Immunol 1994;12:141-179.
111. Zhang R, Chopp M, Zhang Z, Jiang N, Powers C. The expression of P- and E-selectins in three models of middle cerebral artery occlusion.
Brain Res 1998;785:207-214.
112. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke.
J Neuropath Exp Neurol 2003;62:127-136.
113. Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator.
Neurobiol Dis 2010;38:376-385.
114. Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration.
J Cereb Blood Flow Metab 2010;30:1564-1576.
115. Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PH, et al. microRNAs in stroke pathogenesis.
Curr Mol Med 2011;11:76-92.
116. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, et al. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation.
Stroke 2013;44:1706-1713.
117. Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation.
Brain Behav Immun 2015;49:75-85.
119. Weinstein JR, Koerner IP, Möller T. Microglia in ischemic brain injury.
Future Neurol 2010;5:227-246.
120. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.
Nat Immun 2010;11:373-384.
121. Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3.
J Biol Chem 2004;279:12542-12550.
122. Akira S. TLR signaling. In: From Innate Immunity to Immunological Memory Berlin, Heideleberg: Springer; 2006. p. 1-16.
123. Brea D, Blanco M, Ramos-Cabrer P, Moldes O, Arias S, Pérez-Mato M, et al. Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values.
J Cereb Blood Flow Metab 2011;31:1424-1431.
124. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke.
Circulation 2007;115:1599-1608.
126. Zhang L, Li YJ, Wu XY, Hong Z, Wei WS. MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4.
J Neurochem 2015;132:713-723.
128. Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC. miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production.
Immunology 2012;135:73-88.
129. Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease.
J Biol Chem 2011;286:1436-1444.
130. Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1.
J Immunol 2010;185:6226-6233.
132. Banerjee S, Xie N, Cui H, Tan Z, Yang S, Icyuz M, et al. MicroRNA let-7c regulates macrophage polarization.
J Immunol 2013;190:6542-6549.
133. Xie W, Li M, Xu N, Lv Q, Huang N, He J, et al. Mir-181a regulates inflammation responses in monocytes and macrophages.
PLoS One 2013;8:e58639.
134. Sharma A, Kumar M, Aich J, Hariharan M, Brahmachari SK, Agrawal A, et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a.
Proc Natl Acad Sci U S A 2009;106:5761-5766.
135. Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS.
Glia 2013;61:91-103.
136. Liu Y, Zhang J, Han R, Liu H, Sun D, Liu X. Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke.
J Clin Neurosci 2015;22:291-295.
137. Yan W, Zhang W, Sun L, Liu Y, You G, Wang Y, et al. Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme.
Brain Res 2011;1411:108-115.
138. Jones S, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13.
Osteoarthritis Cartilage 2009;17:464-472.
139. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals.
Proc Natl Acad Sci U S A 2009;106:5282-5287.
140. Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion.
Nat Rev Mol Cell Biol 2010;11:700-714.
141. Wei L, Ying DJ, Cui L, Langsdorf J, Yu SP. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats.
Brain Res 2004;1022:54-61.
142. Ünal-Çevik I, Kılınç M, Can A, Gürsoy-Özdemir Y, Dalkara T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia.
Stroke 2004;35:2189-2194.
143. Adams JM. Ways of dying: multiple pathways to apoptosis.
Genes Dev 2003;17:2481-2495.
144. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death.
Physiol Rev 2007;87:99-163.
145. Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA. Fas (cd95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia.
J Cereb Blood Flow Metab 2001;21:1411-1421.
146. Green DR. Apoptotic pathways: ten minutes to dead.
Cell 2005;121:671-674.
147. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy.
Biochim Biophys Acta 2013;1833:3448-3459.
148. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, et al. Apoptosis-inducing factor triggered by poly (ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia.
J Neurosci 2005;25:10262-10272.
149. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia.
Stroke 2009;40:e331-e339.
150. Li H, Colbourne F, Sun P, Zhao Z, Buchan AM, Iadecola C. Caspase inhibitors reduce neuronal injury after focal but not global cerebral ischemia in rats.
Stroke 2000;31:176-182.
151. Peng Z, Li J, Li Y, Yang X, Feng S, Han S, et al. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1.
J Neurosci Res 2013;91:1349-1362.
152. Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia.
Neurobiol Dis 2010;38:17-26.
153. Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang F, Xu X, et al. MicroRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through Fas/FasL pathway.
J Mol Neurosci 2016;58:507-516.
154. Schickel R, Park SM, Murmann AE, Peter ME. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1.
Mol Cell 2010;38:908-915.
155. Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, et al. MicroRNA-21 protects neurons from ischemic death.
FEBS J 2010;277:4299-4307.
156. Seko Y, Kayagaki N, Seino K, Yagita H, Okumura K, Nagai R. Role of Fas/FasL pathway in the activation of infiltrating cells in murine acute myocarditis caused by Coxsackievirus B3.
J Am Coll Cardiol 2002;39:1399-1403.
157. Liu Y, Pan Q, Zhao Y, He C, Bi K, Chen Y, et al. MicroRNA-155 regulates ROS production, no generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions.
J Cell Biochem 2015;116:2870-2881.
158. Tao Z, Zhao H, Wang R, Liu P, Yan F, Zhang C, et al. Neuroprotective effect of microRNA-99a against focal cerebral ischemia-reperfusion injury in mice.
J Neurol Sci 2015;355:113-119.
159. Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke.
Mol Neurobiol 2015;53:6809-6817.
160. Luo S, Rubinsztein DC. BCL2l11/BIM: a novel molecular link between autophagy and apoptosis.
Autophagy 2013;9:104-105.
161. Sionov RV, Vlahopoulos SA, Granot Z. Regulation of BIM in health and disease.
Oncotarget 2015;6:23058-23134.
162. Wiessner C, Allegrini PR, Rupalla K, Sauer D, Oltersdorf T, McGregor AL, et al. Neuron-specific transgene expression of Bcl-XL but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice.
Neurosci Lett 1999;268:119-122.
163. Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss.
J Cereb Blood Flow Metab 2013;33:1976-1982.
164. Zhai F, Zhang X, Guan Y, Yang X, Li Y, Song G, et al. Expression profiles of microRNAs after focal cerebral ischemia/reperfusion injury in rats.
Neural Regen Res 2012;7:917-923.
165. Huang W, Liu X, Cao J, Meng F, Li M, Chen B, et al. Mir-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling.
J Mol Neurosci 2015;55:821-829.
166. Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, et al. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B.
Brain Res 2014;1592:22-33.
167. Kang L, Zhang G, Yan Y, Ke K, Wu X, Gao Y, et al. The role of HSPA12B in regulating neuronal apoptosis.
Neurochem Res 2013;38:311-320.
168. Ma Y, Lu C, Li C, Li R, Zhang Y, Ma H, et al. Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism.
Biochim Biophys Acta 2013;1832:57-66.
169. Lim KY, Chua JH, Tan JR, Swaminathan P, Sepramaniam S, Armugam A, et al. MicroRNAs in cerebral ischemia.
Transl Stroke Res 2010;1:287-303.
170. Liu X, Li F, Zhao S, Luo Y, Kang J, Zhao H, et al. MicroRNA-124-mediated regulation of inhibitory member of apoptosisstimulating protein of p53 family in experimental stroke.
Stroke 2013;44:1973-1980.
172. Yang L, Xiong Y, Hu XF, Du YH. MicroRNA-323 regulates ischemia/reperfusion injury-induced neuronal cell death by targeting BRI3. Int J Clin Exp Path 2015;8:10725-10733.
173. Seto SW, Chang D, Jenkins A, Bensoussan A, Kiat H. Angiogenesis in ischemic stroke and angiogenic effects of Chinese herbal medicine.
J Clin Med 2016;5:56.
174. Fonarow GC, Zhao X, Smith EE, Saver JL, Reeves MJ, Bhatt DL, et al. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative.
JAMA 2014;311:1632-1640.
175. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP; American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association.
Stroke 2009;40:2945-2948.
176. IST-3 collaborative group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial.
Lancet 2012;379:2352-2363.
177. Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM. The neurotoxicity of tissue plasminogen activator?
J Cereb Blood Flow Metab 2004;24:945-963.
178. Fan M, Xu H, Wang L, Luo H, Zhu X, Cai P, et al. Tissue plasminogen activator neurotoxicity is neutralized by recombinant ADAMTS 13.
Sci Rep 2016;6:25971.
179. Armstead WM, Nassar T, Akkawi S, Smith DH, Chen XH, Cines DB, et al. Neutralizing the neurotoxic effects of exogenous and endogenous tPA.
Nat Neurosci 2006;9:1150-1155.
180. Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, et al. Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis.
Blood 2000;96:569-576.
181. Shi ZS, Loh Y, Walker G, Duckwiler GR; MERCI and Multi MERCI Investigators. Clinical outcomes in middle cerebral artery trunk occlusions versus secondary division occlusions after mechanical thrombectomy: pooled analysis of the mechanical embolus removal in cerebral ischemia (MERCI) and multi MERCI trials.
Stroke 2010;41:953-960.
182. Onwuekwe I, Ezeala-Adikaibe B. Ischemic stroke and neuroprotection.
Ann Med Health Sci Res 2012;2:186-190.
183. Guyot L, Diaz FG, O’regan MH, McLeod S, Park H, Phillis JW. Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery occlusion model.
Neurosci Lett 2001;299:37-40.
184. Ohta K, Graf R, Rosner G, Heiss WD. Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats.
Stroke 2001;32:535-543.
185. Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of brain Na
+/Ca
2+ exchanger: from molecular biology to therapeutic perspectives.
Pharmacol Rev 2004;56:633-654.
186. Boscia F, Gala R, Pignataro G, De Bartolomeis A, Cicale M, Ambesi-Impiombato A, et al. Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na
+/Ca
2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions.
J Cereb Blood Flow Metab 2006;26:502-517.
187. Tortiglione A, Pignataro G, Minale M, Secondo A, Scorziello A, Di Renzo GF, et al. Na
+/exchanger in Na
+ efflux-Ca
2+ influx mode of operation exerts a neuroprotective role in cellular models of in vitro anoxia and in vivo cerebral ischemia.
Ann N Y Acad Sci 2002;976:408-412.
188. Molinaro P, Cantile M, Cuomo O, Secondo A, Pannaccione A, Ambrosino P, et al. Neurounina-1, a novel compound that increases Na
+/Ca
2+ exchanger activity, effectively protects against stroke damage.
Mol Pharmacol 2013;83:142-156.
189. Vinciguerra A, Formisano L, Cerullo P, Guida N, Cuomo O, Esposito A, et al. MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits.
Mol Ther 2014;22:1829-1838.
190. Xu LJ, Ouyang YB, Xiong X, Stary CM, Giffard RG. Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia.
Exp Neurol 2015;264:1-7.
191. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells.
Immunology 2006;117:433-442.
193. Buisson A, Nicole O, Docagne F, Sartelet H, Mackenzie ET, Vivien D. Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor β1.
FASEB J 1998;12:1683-1691.
194. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage.
Eur J Neurosci 2000;12:2265-2272.
196. Cheng Y, Sun AY. Oxidative mechanisms involved in kainate-induced cytotoxicity in cortical neurons.
Neurochem Res 1994;19:1557-1564.
197. Lapchak PA, Chapman DF, Zivin JA. Pharmacological effects of the spin trap agents N-t-butyl-phenylnitrone (PBN) and 2,2,6, 6-tetramethylpiperidine-N-oxyl (TEMPO) in a rabbit thromboembolic stroke model: combination studies with the thrombolytic tissue plasminogen activator.
Stroke 2001;32:147-153.
198. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration.
Ann N Y Acad Sci 2008;1147:61-69.
199. Jessell T, Sanes J. The generation and survival of nerve cells. In : Kandel E, Schwartz JH, editors. Principles of Neural Sciences New York: McGraw-Hill; 2000. p. 1041-1062.
200. Cheng YD, Al-Khoury L, Zivin JA. Neuroprotection for ischemic stroke: two decades of success and failure.
NeuroRx 2004;1:36-45.
201. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia.
Neuroscience 2009;158:1021-1029.
202. Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model.
PLoS One 2012;7:e32662.
204. Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H, et al. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain.
Gene Ther 2014;21:37-43.
205. Wang YQ, Cui HR, Yang SZ, Sun HP, Qiu MH, Feng XY, et al. VEGF enhance cortical newborn neurons and their neurite development in adult rat brain after cerebral ischemia.
Neurochem Int 2009;55:629-636.
206. Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats.
J Cereb Blood Flow Metab 2004;24:441-448.
207. Shruster A, Ben-Zur T, Melamed E, Offen D. Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury.
PLoS One 2012;7:e40843.
208. Bambakidis NC, Petrullis M, Kui X, Rothstein B, Karampelas I, Kuang Y, et al. Improvement of neurological recovery and stimulation of neural progenitor cell proliferation by intrathecal administration of Sonic hedgehog.
J Neurosurg 2012;116:1114-1120.
209. Sims JR, Lee SW, Topalkara K, Qiu J, Xu J, Zhou Z, et al. Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation.
Stroke 2009;40:3618-3626.
210. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo.
Nature 2006;442:823-826.
211. Pang L, Ye W, Che XM, Roessler BJ, Betz AL, Yang GY. Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-β1 expression.
Stroke 2001;32:544-552.
212. Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT, et al. MicroRNAs involved in regulating spontaneous recovery in embolic stroke model.
PLoS One 2013;8:e66393.
214. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, et al. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway.
PLoS One 2011;6:e23461.
215. Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, et al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors.
Cell Stem Cell 2010;6:323-335.
216. Arenillas JF, Sobrino T, Castillo J, Dávalos A. The role of angiogenesis in damage and recovery from ischemic stroke.
Curr Treat Options Cardiovasc Med 2007;9:205-212.
217. Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis.
Biochem Biophys Res Commun 2009;386:549-553.
218. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia.
Front Biosci (Elite Ed) 2011;3:1265-1272.
219. Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. microRNA: emerging therapeutic targets in acute ischemic diseases.
Pharmacol Ther 2010;125:92-104.
220. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. A microRNA signature of hypoxia.
Mol Cell Biol 2007;27:1859-1867.
221. Crosby ME, Devlin CM, Glazer PM, Calin GA, Ivan M. Emerging roles of microRNAs in the molecular responses to hypoxia.
Curr Pharm Des 2009;15:3861-3866.
222. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice.
Science 2009;324:1710-1713.
223. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.
J Clin Invest 2003;111:1843-1851.
226. Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, et al. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis.
J Clin Invest 2013;123:1057-1067.
227. Yin KJ, Olsen K, Hamblin M, Zhang J, Schwendeman SP, Chen YE. Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia.
J Biol Chem 2012;287:27055-27064.
228. Yin KJ, Hamblin M, Chen YE. Angiogenesis-regulating microRNAs and ischemic stroke.
Curr Vasc Pharmacol 2015;13:352-365.
229. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, et al. Mirna-directed regulation of VEGF and other angiogenic factors under hypoxia.
PLoS One 2006;1:e116.
230. Chen Y, Leal AD, Patel S, Gorski DH. The homeobox gene GAX activates p21WAF1/CIP1 expression in vascular endothelial cells through direct interaction with upstream AT-rich sequences.
J Biol Chem 2007;282:507-517.
231. Patel S, Leal AD, Gorski DH. The homeobox gene Gax inhibits angiogenesis through inhibition of nuclear factor-κb-dependent endothelial cell gene expression.
Cancer Res 2005;65:1414-1424.
232. Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5.
Blood 2008;111:1217-1226.
233. Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, et al. MicroRNA expression in the adult mouse central nervous system.
RNA 2008;14:432-444.
234. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation.
Proc Natl Acad Sci U S A 2005;102:18081-18086.
235. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells.
Circ Res 2007;100:1164-1173.
236. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges.
Nat Rev Drug Discov 2014;13:622-638.
237. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery.
J Control Release 2013;172:962-974.
238. Li Y, Liu Y, Wang Z, Hou H, Lin Y, Jiang Y. MicroRNA: not far from clinical application in ischemic stroke.
ISRN Stroke 2013;2013:1-7.
239. Zhang H, Shykind B, Sun T. Approaches to manipulating microRNAs in neurogenesis.
Front Neurosci 2013;6:196.
240. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’.
Nature 2005;438:685-689.
241. Morrisey EE. The magic and mystery of miR-21.
J Clin Invest 2010;120:3817-3819.
242. Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice.
J Clin Invest 2010;120:3912-3916.
243. Jiang Y, Wei N, Lu T, Zhu J, Xu G, Liu X. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats.
Neuroscience 2011;172:398-405.
244. Jiang Y, Zhu J, Xu G, Liu X. Intranasal delivery of stem cells to the brain.
Expert Opin Drug Deliv 2011;8:623-632.
245. Liu X. Clinical trials of intranasal delivery for treating neurological disorders--a critical review.
Expert Opin Drug Deliv 2011;8:1681-1690.
246. Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, et al. Mir-206 regulates brain-derived neurotrophic factor in Alzheimer disease model.
Ann Neurol 2012;72:269-277.
247. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice.
Nat Genet 2002;32:107-108.
248. Kishida T, Asada H, Gojo S, Ohashi S, Shin-Ya M, Yasutomi K, et al. Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA.
J Gene Med 2004;6:105-110.
249. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D. MicroRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets.
PLoS One 2014;9:e99283.
250. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury.
Clin Chem 2009;55:1977-1983.
251. Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K, et al. Plasma mir-124 as a biomarker for cerebral infarction.
Biomed Res 2011;32:135-141.
253. epramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP, et al. Circulating microRNAs as biomarkers of acute stroke.
Int J Mol Sci 2014;15:1418-1432.
254. Wang W, Sun G, Zhang L, Shi L, Zeng Y. Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans.
J Stroke Cerebrovasc Dis 2014;23:2607-2613.