A Novel Computerized Clinical Decision Support System for Treating Thrombolysis in Patients with Acute Ischemic Stroke
Ji Sung Lee, Chi Kyung Kim, Jihoon Kang, Jong-Moo Park, Tai Hwan Park, Kyung Bok Lee, Soo Joo Lee, Yong-Jin Cho, Jaehee Ko, Jinwook Seo, Hee-Joon Bae, Juneyoung Lee
J Stroke. 2015;17(2):199-209.   Published online 2015 May 29     DOI: https://doi.org/10.5853/jos.2015.17.2.199
Citations to this article as recorded by Crossref logo
Functional Outcomes and Symptomatic Intracranial Hemorrhage After Endovascular Treatment in Acute Vertebrobasilar Artery Occlusions: External Validation of Prediction Models
Yingjie Xu, Miaomiao Hu, Pan Zhang, Lulu Xiao, Yanan Lu, Dezhi Liu, Yongkun Li, Andrea M. Alexandre, Alessandro Pedicelli, Aldobrando Broccolini, Luca Scarcia, Hao Chen, Wen Sun
Stroke: Vascular and Interventional Neurology.2024;[Epub]     CrossRef
Effects of clinical decision support systems in chronic disease management
Song Li
International Journal of Clinical and Experimental Medicine.2024; 17(4): 47.     CrossRef
Advanced Machine Learning Models for Predicting Post-Thrombolysis Hemorrhagic Transformation in Acute Ischemic Stroke Patients: A Systematic Review and Meta-Analysis
You-li Jiang, Qing-shi Zhao, Ao Li, Zong-bi Wu, Lin-lin Liu, Fu Lin, Yan-feng Li
Clinical and Applied Thrombosis/Hemostasis.2024;[Epub]     CrossRef
A new machine learning algorithm with high interpretability for improving the safety and efficiency of thrombolysis for stroke patients: A hospital-based pilot study
Huiling Shao, Wing Chi Lawrence Chan, Heng Du, Xiangyan Fiona Chen, Qilin Ma, Zhiyu Shao
DIGITAL HEALTH.2023; 9: 205520762211495.     CrossRef
Symptomatic Intracranial Hemorrhage After Endovascular Stroke Treatment: External Validation of Prediction Models
Nadinda A.M. van der Ende, Femke C.C. Kremers, Wouter van der Steen, Esmee Venema, Manon Kappelhof, Charles B.L.M. Majoie, Alida A. Postma, Jelis Boiten, Ido R. van den Wijngaard, Aad van der Lugt, Diederik W.J. Dippel, Bob Roozenbeek
Stroke.2023; 54(2): 476.     CrossRef
HTE 3.0: Knowledge‐based systems in cascade for familial hypercholesterolemia detection and dyslipidemia treatment
Beatriz López, Ferran Torrent‐Fontbona, Luis Masana Marín, Alberto Zamora
Expert Systems.2022;[Epub]     CrossRef
The feasibility and accuracy of machine learning in improving safety and efficiency of thrombolysis for patients with stroke: Literature review and proposed improvements
Huiling Shao, Xiangyan Chen, Qilin Ma, Zhiyu Shao, Heng Du, Lawrence Wing Chi Chan
Frontiers in Neurology.2022;[Epub]     CrossRef
A risk score for prediction of symptomatic intracerebral haemorrhage following thrombolysis
Mukesh Soni, Tissa Wijeratne, David C. Ackland
International Journal of Medical Informatics.2021; 156: 104586.     CrossRef
Simple Estimates of Symptomatic Intracranial Hemorrhage Risk and Outcome after Intravenous Thrombolysis Using Age and Stroke Severity
Hye Jung Lee, Ji Sung Lee, Jay Chol Choi, Yong-Jin Cho, Beom Joon Kim, Hee-Joon Bae, Dong-Eog Kim, Wi-Sun Ryu, Jae-Kwan Cha, Dae Hyun Kim, Hyun-Wook Nah, Kang-Ho Choi, Joon-Tae Kim, Man-Seok Park, Jeong-Ho Hong, Sung Il Sohn, Kyusik Kang, Jong-Moo Park, W
Journal of Stroke.2017; 19(2): 229.     CrossRef