A Novel Computerized Clinical Decision Support System for Treating Thrombolysis in Patients with Acute Ischemic Stroke
Ji Sung Lee, Chi Kyung Kim, Jihoon Kang, Jong-Moo Park, Tai Hwan Park, Kyung Bok Lee, Soo Joo Lee, Yong-Jin Cho, Jaehee Ko, Jinwook Seo, Hee-Joon Bae, Juneyoung Lee
J Stroke. 2015;17(2):199-209.   Published online 2015 May 29     DOI: https://doi.org/10.5853/jos.2015.17.2.199
Citations to this article as recorded by Crossref logo
HTE 3.0: Knowledge‐based systems in cascade for familial hypercholesterolemia detection and dyslipidemia treatment
Beatriz López, Ferran Torrent‐Fontbona, Luis Masana Marín, Alberto Zamora
Expert Systems.2022;[Epub]     CrossRef
The feasibility and accuracy of machine learning in improving safety and efficiency of thrombolysis for patients with stroke: Literature review and proposed improvements
Huiling Shao, Xiangyan Chen, Qilin Ma, Zhiyu Shao, Heng Du, Lawrence Wing Chi Chan
Frontiers in Neurology.2022;[Epub]     CrossRef
A risk score for prediction of symptomatic intracerebral haemorrhage following thrombolysis
Mukesh Soni, Tissa Wijeratne, David C. Ackland
International Journal of Medical Informatics.2021; 156: 104586.     CrossRef
Simple Estimates of Symptomatic Intracranial Hemorrhage Risk and Outcome after Intravenous Thrombolysis Using Age and Stroke Severity
Hye Jung Lee, Ji Sung Lee, Jay Chol Choi, Yong-Jin Cho, Beom Joon Kim, Hee-Joon Bae, Dong-Eog Kim, Wi-Sun Ryu, Jae-Kwan Cha, Dae Hyun Kim, Hyun-Wook Nah, Kang-Ho Choi, Joon-Tae Kim, Man-Seok Park, Jeong-Ho Hong, Sung Il Sohn, Kyusik Kang, Jong-Moo Park, W
Journal of Stroke.2017; 19(2): 229.     CrossRef