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Background and Purpose Accurate classification of ischemic stroke subtype is important for effective 
secondary prevention of stroke. We used diffusion-weighted image (DWI) and atrial fibrillation (AF) 
data to train a deep learning algorithm to classify stroke subtype.
Methods Model development was done in 2,988 patients with ischemic stroke from three centers 
by using U-net for infarct segmentation and EfficientNetV2 for subtype classification. Experienced 
neurologists (n=5) determined subtypes for external test datasets, while establishing a consensus 
for clinical trial datasets. Automatically segmented infarcts were fed into the model (DWI-only 
algorithm). Subsequently, another model was trained, with AF included as a categorical variable 
(DWI+AF algorithm). These models were tested: (1) internally against the opinion of the labeling 
experts, (2) against fresh external DWI data, and (3) against clinical trial dataset.
Results In the training-and-validation datasets, the mean (±standard deviation) age was 68.0±12.5 
(61.1% male). In internal testing, compared with the experts, the DWI-only and the DWI+AF 
algorithms respectively achieved moderate (65.3%) and near-strong (79.1%) agreement. In external 
testing, both algorithms again showed good agreements (59.3%–60.7% and 73.7%–74.0%, 
respectively). In the clinical trial dataset, compared with the expert consensus, percentage 
agreements and Cohen’s kappa were respectively 58.1% and 0.34 for the DWI-only vs. 72.9% and 
0.57 for the DWI+AF algorithms. The corresponding values between experts were comparable 
(76.0% and 0.61) to the DWI+AF algorithm.
Conclusion Our model trained on a large dataset of DWI (both with or without AF information) 
was able to classify ischemic stroke subtypes comparable to a consensus of stroke experts. 
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Introduction

Studies have shown that the volume1 and pattern2 of ischemic 
lesions on diffusion-weighted image (DWI) are associated with 
stroke subtype and predictive of post-stroke functional outcomes 
and future cerebrovascular events. Approximately a quarter of 
patients with ischemic stroke experience recurrence.3,4 In a pre-
vious study of 7,101 patients with acute ischemic stroke, we ob-
served that large artery atherosclerosis (LAA) and cardioembolic 
strokes were associated with an approximately 5-times higher 
risk of recurrence at 1-year, compared with small vessel occlu-
sion (SVO) stroke.5 The etiology of stroke is critical to the cor-
rect implementation of future preventative strategies.

The Trial of Org10172 in Acute Stroke (TOAST) classification 
has been the most frequently method employed for etiologic 
stroke subtyping in clinical practice and research.6 The original 
TOAST classification required clinical features and data from tests 
including brain imaging (computed tomography/magnetic res-
onance imaging [CT/MRI]), cardiac evaluation (electrocardiogra-
phy [ECG], echocardiography, and etc.), duplex imaging of extra-
cranial arteries, arteriography, and laboratory assessments for a 
pro-thrombotic state.6 Additional tests, such as Holter monitor-
ing, implantable loop recorder, and high-resolution vessel wall 
MRI have enabled more precise stroke subtyping.7 However, these 
tests increase the cost and the length of hospital stay. Moreover, 
many countries lack enough access to these advanced techniques. 
A diagnosis support system using initial or simple exams, such 
as DWI and ECG, to detect acute infarcts and atrial fibrillation 
(AF) could reduce costs8,9 and assist clinicians who do not have 
access to other resources to determine stroke etiology.

To date, a few previous studies have developed automated 
systems for classifying stroke subtypes using deep learning al-
gorithms and DWI.10,11 However, no study has externally validat-
ed these algorithms, which is critically important given the low 
inter-rater reliability in the classification of stroke subtypes.12 In 
the present multi-center study, we enrolled about 6,500 patients 
with acute ischemic stroke. Using 2,489 patients’ DWI data with 
and without information on the presence of AF, we developed 
a deep learning algorithm to classify stroke subtypes. We then 
externally validated the deep learning algorithm on a new set 
of 3,384 patients, using three temporally and regionally different 
datasets. In addition, we compared stroke subtype classifications 
by the deep learning algorithm versus neurovascular experts. Fi-
nally, we outlined practical applications of the deep learning-
based stroke subtype classification for cardioembolism (CE) risk 
stratification based solely on initial DWI assessments, for use 
when AF information is not available or becomes available af-
ter continuous ECG monitoring (for days–years).13,14

Methods

Participants 

Dataset for training, validation, and internal testing
From May 2011 to March 2014, we consecutively enrolled 4,514 
patients with acute ischemic stroke, who were admitted to three 
university hospitals (Dongguk University Hospital, Seoul National 
University Bundang Hospital, and Dong-A University Hospital). 
We included a consecutive series of patients who were admit-
ted within 7 days of onset, while excluding the following patients 
with: (1) unavailable or poor-quality of DWI (n=342), (2) other 
causes of stroke (n=241), and (3) undetermined stroke subtype 
(n=933) (Supplementary Figure 1). The remaining 2,998 patients’ 
data were used for training, validation, and internal test, using 
random sub-setting in ratio of 7:2:1. The institutional review 
board of Dongguk University Hospital (IRB No. 2017-09-017) 
and each participating center approved the study protocol, and 
patients or their legal proxies provided a written informed consent.

Datasets for external testing 
A total of 3,384 fresh stroke imaging datasets were used for ex-
ternal testing, comprised of the following components.

External test dataset 1 
From May 2011 to March 2014, 2,787 patients with acute isch-
emic stroke who were admitted within 7 days of symptom on-
set were consecutively enrolled from Chonnam National Uni-
versity Hospital. After excluding 868 patients, 1,919 were finally 
included (Supplementary Figure 1). 

External test dataset 2 
From October 2021 to August 2022, 1,315 patients with acute 
ischemic stroke who were admitted within 7 days of symptom 
onset were consecutively enrolled from the Chonnam National 
University Hospital. After excluding 491 patients, 824 were fi-
nally included (Supplementary Figure 1). 

External test dataset 3 
From March 2021 to April 2022, 931 patients with acute isch-
emic stroke who were admitted within 7 days of symptom on-
set were consecutively enrolled from Korea University Guro Hos-
pital. After excluding 290 patients, 641 were finally included 
(Supplementary Figure 1). 

Clinical trial dataset
A pivotal clinical trial was conducted to assess the efficacy of 
deep learning algorithms in comparison to a standard reference 
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established through expert consensus, and to measure the level 
of agreement between the deep learning algorithm and the con-
sensus as well as among the experts themselves. From March 
2016 to May 2017, 1,701 patients who met the following inclu-
sion criteria were enrolled from the two stroke centers (Dong-
guk University Hospital and Seoul National University Bundang 
Hospital): (1) age between 20 and 95 years, (2) patients with 
acute ischemic stroke who visited the hospitals within 7 days af-
ter symptom onset, and (3) patients who underwent DWI. Ac-
cording to the pre-planned exclusion criteria, we excluded 612 
patients for the following reasons: inadequate or poor-quality 
DWI (n=148), other causes of stroke (n=114), undetermined 
causes of stroke (n=315), and CE stroke attributable to causes 
other than AF (n=35). Thus, data from 900 patients remained 
available for clinical testing.

Clinical data collection 
Using a standardized protocol,15 we prospectively collected de-
mographic data, prior medication history, and the presence of 
vascular risk factors including hypertension, diabetes mellitus, 
hyperlipidemia, coronary artery disease, AF, and smoking history.

Imaging acquisition and infarct segmentation 
For the training data, brain MRIs were performed on 1.5 tesla 
(n=2,471) or 3.0 tesla (n=527) MRI systems. The DWI protocol 
was as follows: b-values of 0 and 1,000 s/mm2, echo time 50–
99 ms, repetition time 2,400–9,000 ms, voxel size 1×1×3–5 mm3, 
interslice gap of 0–2 mm, and slice thickness of 3–7 mm. Using 
a validated 3D U-net algorithm that we recently developed,16,17 
we automatically segmented infarct lesions on DWIs.

Ischemic stroke subtype classification
For the datasets for training and validation, internal testing, and 
external test datasets 1–3, stroke subtypes were determined by 
experienced vascular neurologists at each hospital, using a val-
idated MRI-based classification system built on the TOAST cri-
teria (details provided in Supplementary Methods and Supple-
mentary Figure 2).7 Briefly, the modified TOAST classification is 
composed of the following five steps: (1) consideration of other 
determined etiologies of stroke, (2) screening for SVO on DWI, 
(3) consideration of relevant artery stenosis or occlusion, (4) con-
sideration of recanalization status after recanalization therapy, 
and (5) consideration of follow-up recanalization status without 
recanalization therapy. For the clinical trial dataset, stroke sub-
types were determined through consensus among three experi-
enced vascular neurologists (J-W Chung, J-S Lim, and D-E Kim).

Development of a deep learning algorithm for 
ischemic stroke subtype classification 
Brain DWIs were preprocessed by (1) skull stripping using the 
Gaussian blur and Otsu’s threshold,18 (2) applying N4 bias field 
correction using the SimpleITK library, and (3) performing image 
signal normalization. After the preprocessing, infarct areas on 
DWI were automatically segmented using the aforementioned 
validated 3D U-net algorithm (JLK-DWI, JLK Inc., Seoul, Korea).16,17 
The segmented infarct masks from raw DWIs were stacked and 
condensed into three 2D X, Y, Z-axis images to ensure consis-
tent data input regardless of the number of slices (Supplemen-
tary Figure 3). These condensed 2D X, Y, Z-axis images were re-
sized to 256×256 pixels using bilinear interpolation. Thus, the 
training data for the algorithm was comprised of three 2D im-
ages representing X, Y, Z-axis projections of segmented infarct 
area and a label (LAA, SVO, and CE).

In a pilot study, deep learning models using EfficientNetV219 
outperformed those using ResNet,20 MobileNetV3,21 and Efficient-
Net22 in stroke subtyping (data not shown). The EfficientNetV219 
is a new family of convolutional networks that have faster train-
ing speed and better parameter efficiency, while adding a global_
average_pooling2d layer to minimize overfitting by reducing 
the total number of parameters. In addition, we incorporated a 
sequence of one inner dense layer with dropout layers. In total, 
a 30% dropout rate was randomly chosen to avoid overfitting. 
Finally, one output dense layer contained 3 output units for 
multi-class (LAA, SVO, and CE) classification, which were desig-
nated as the DWI-only based subtype classification. The details 
of the layers, their order in the proposed model, and the output 
shape of each layer are presented in Supplementary Figure 3. 
The total number of parameters was 52,862,199. 

To develop a deep learning algorithm that takes account for 
AF, we concatenated a binary value (0 vs. 1: the absence vs. pres-
ence of AF) to previous outputs, and then applied a fully con-
nected layer. The output was then designated as the DWI+AF 
based subtype classification.

For all the procedures, including preprocessing and model 
development, we used Python 3.7.9 and 3.8.13, PyTorch 1.12.0, 
Torchvision 0.13.0, pandas 1.2.4, NumPy 1.19.5/1.22.3, SciPy 
1.4.1/1.6.3, scikit-image 0.15.0/0.18.1, SimpleITK 2.1.1, and Py-
dicom 2.1.2. Each model was trained for approximately 9 hours 
using a hardware system comprising Intel Xeon Silver 4314 
@2.40 GHz, 640 GB RAM, and NVIDIA Quadro RTX A6000 with 
48GB GDDR6.

Expert consensus for the classification of stroke 
subtype in the clinical trial dataset 
For the clinical trial dataset, we first assessed the inter-observer 
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agreement of stroke subtype classification between two experts 
(J-W Chung and J-S Lim, board-certified neurologists with more 
than 5-year experience in both stroke practice and research), who 
had served as stroke neurologists at least 5 years and indepen-
dently reviewed the brain MRI and patients’ data. Information 
provided to the reviewers included age, sex, the presence of AF, 
DWIs, and magnetic resonance or CT angiography. Based on 
the aforementioned ischemic stroke subtype-classification sys-
tem,7 they independently determined etiologies (i.e., LAA, SVO, 
or CE). In cases of disagreement between the two reviewers, a 
third reviewer (D-E Kim) served as the tie-breaker. When the 
final consensus on stroke subtype was undetermined or other 
determined stroke, the case was excluded from the analysis. 
The experts’ consensus classifications were compared with the 
deep learning algorithm’s classifications. 

Statistical analysis 
The baseline characteristics between datasets were compared 
using the analysis of variance or Kruskal–Wallis test for contin-
uous variables and chi-square test for categorical variables, as 
appropriate. To compare the subtype classifications made by 
experts and those made by deep learning algorithms, we used 
percentage agreement and Cohen’s kappa. To assess performance 
metrics of deep learning algorithms, we used the one-vs-rest 
method23 and calculated the area under the receiver operating 
characteristic curve (AUC), sensitivity, specificity, positive pre-
dictive value, and negative predictive value for each subtype 
(LAA, SVO, and CE). In the clinical trial dataset, a paired t-test 
was used to compare CE probabilities estimated by the DWI-
only and DWI+AF algorithms for CE cases that artificial intelli-
gence (AI) algorithms misclassified as LAA. Additionally, the rates 
of inter-expert disagreements for LAA, SVO, and CE were com-
pared with the rates of disagreements between the expert con-
sensus and the DWI+AF algorithm-based classifications for these 
three subtypes. Further, disagreements for the following three 
subtypes of LAA were also assessed (Supplementary Figure 2): 
LAA–negative (LAA-NG), LAA–branch atheromatous disease (LAA-
BR), and LAA–lacune (LAA-LC). To evaluate the performance of 
deep learning algorithms depending on the onset-to-imaging 
time (<24 hours vs. 24 hours–7 days), we calculated the per-
centage agreements of stroke subtyping between both the early 
and late imaging groups using the external test dataset 3 as 
well as the clinical trial dataset, both of which had information 
on the time of DWI acquisition. To examine the clinical implica-
tions of AI prediction of CE using DWI, participants in each da-
taset were stratified into ten groups based on the probability of 
having CE estimated by deep learning algorithm. The trend of 
the observed frequency of CE stroke, as determined by experts, 

was examined using a Wilcoxon-type test for trend.24 All the 
statistical analyses described above were performed using Stata 
16.0 (Stata Corp., College Station, TX, USA), and a P-value <0.05 
was considered statistically significant.

Results

Baseline characteristics
In the training and validation datasets, the mean (standard de-
viation [SD]) age was 68.0 (12.5) and 61.1% were men (Table 1). 
Mean ages were similar in all datasets. Other demographic char-
acteristics, such as sex, admission National Institute of Health 
Stroke Scale scores, and risk factors for stroke varied signifi-
cantly among the datasets. The distribution of stroke subtypes 
also differed among the datasets, indicating their heterogeneity.

Deep learning prediction of stroke subtype using 
DWI data only versus DWI plus AF data
In the internal test dataset (Table 2), the percentage agreement 
between the DWI-only algorithm and stroke experts was 65.3% 
(95% confidence interval [CI]: 60.0%–70.6%); the AUC values 
for LAA, SVO, and CE were 0.75, 0.93, and 0.81, respectively (Sup-
plementary Figure 4). After incorporating the information re-
garding the presence of AF (DWI+AF algorithm), the percentage 
agreement increased to 79.1% (95% CI: 74.6%–83.6%), and 
the AUC values for LAA, SVO, and CE increased to 0.90, 0.93, 
and 0.95, respectively (Figure 1).

In the external test datasets (Table 2), both algorithms again 
showed good agreements. The DWI-only algorithm achieved 
59.3%–60.7% levels of agreements (Table 2 and Supplementa-
ry Table 1); the AUC values for LAA, SVO, and CE were 0.69–0.72, 
0.83–0.90, and 0.79–0.82, respectively (Supplementary Figure 4). 
The DWI+AF algorithm again showed higher agreements, rang-
ing from 73.7% to 74.0%, with Cohen’s kappa ranging from 0.57 
to 0.59. In addition, the accuracy of stroke subtype classification 
reached 0.83 (Table 3), and the AUC values for LAA, SVO, and CE 
increased to 0.84–0.88, 0.85–0.91, and 0.95–0.97, respectively 
(Figure 1).

In the clinical trial dataset (Table 2), the percentage agree-
ments and Cohen’s kappa were respectively 58.1% (95% CI: 
54.9%–61.3%) and 0.34 (0.29–0.39) for the DWI-only algorithm, 
and the values were 72.9% (95% CI: 69.1%–76.7%) and 0.57 
(0.51–0.62) for the DWI+AF algorithm, respectively. In addition, 
the AUC values for LAA, SVO, and CE improved from 0.68 to 
0.90, 0.86 to 0.87, and 0.77 to 0.996, respectively (Supplemen-
tary Figure 4 and Figure 1).

Alluvial plots for the five datasets (Figure 2) showed that addi-
tional information regarding the presence of AF on ECG changed 
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the categorization of stroke subtype by the DWI-only algorithm 
from CE to LAA more often (22.1%–38.2%) than from LAA to CE 
(13.7%–16.2%) or from SVO to CE (4.2%–7.2%). There was no 
reclassification from CE to SVO. In the clinical trial dataset, we 
found (1) one CE stroke (with a small subcortical infarct and a 
tiny cortical infarct in the presence of AF; Supplementary Fig-
ure 5A) that the DWI+AF algorithm classified as SVO and (2) 65 
LAA strokes cases (without AF) that the DWI+AF algorithm clas-
sified as CE. For the former CE case, one of the experts misclas-

sified it as undetermined (with two or more causes) prior to the 
consensus meeting, because he failed to detect the cortical infarct 
lesion and had to rule out both SVO and CE as possible causes 
of the single subcortical infarct lesion. Among the 65 LAA stroke 
cases, 14 cases (21.5%) had been initially classified as undeter-
mined (two or more; AF+relevant artery stenosis) by one of the 
two experts. Subsequently in the consensus meeting, the degree 
of stenosis was determined not to be significant. As shown by 
the scatter plots in Supplementary Figure 5B, the DWI+AF al-

Table 1. Baseline characteristics 

Training and 
validation 
(n=2,687)

Internal test
(n=311)

External test 
dataset 1 
(n=1,919)

External test 
dataset 2 
(n=824)

External test 
dataset 3 
(n=641)

Clinical trial 
dataset 
(n=900)

P

Age (yr) 68.0±12.5 68.2±12.9 68.7±12.0 70.2±12.4 67.5±12.0 68.6±12.4 0.229

Male sex 1,642 (61.1) 174 (56.0) 1,090 (56.8) 504 (61.2) 426 (66.5) 551 (61.3) <0.001

Admission NIHSS score* 4 (2–9) 4 (2–9) 4 (2–10) 2 (1–5) 3 (1–5) 4 (2–7) <0.001†

Prestroke mRS score 0–2* 2,346 (87.3) 274 (88.1) 1,667 (86.9) 791 (96.0) 126 (74.6) 832 (92.5) <0.001

Stroke subtype <0.001

LAA 1,224 (45.6) 142 (45.7) 1,044 (54.4) 434 (52.7) 300 (46.8) 574 (63.8)

SVO 667 (24.8) 75 (24.1) 221 (11.5) 154 (18.7) 222 (34.6) 155 (17.2)

CE 796 (29.6) 94 (30.2) 654 (34.1) 236 (28.6) 119 (18.6) 171 (19.0)

Prior stroke history 570 (21.2) 68 (21.9) 301 (15.7) 161 (19.5) 101 (15.8) 168 (18.7) <0.001

Coronary artery disease 257 (9.6) 29 (9.3) 60 (3.1) 67 (8.1) 56 (8.7) 82 (9.1) <0.001

Hypertension 1,884 (70.1) 222 (71.4) 1,203 (62.7) 484 (58.7) 426 (66.5) 660 (73.4) <0.001

Diabetes 966 (36.0) 126 (40.5) 577 (30.1) 247 (30.0) 205 (32.0) 341 (37.9) <0.001

Hyperlipidemia 1,246 (46.4) 148 (47.6) 299 (15.6) 154 (18.7) 68 (10.6) 385 (42.8) <0.001

Smoking 1,122 (41.8) 121 (38.9) 717 (37.4) 219 (26.6) 215 (33.5) 394 (43.8) <0.001

Atrial fibrillation 645 (24.0) 74 (24.0) 539 (28.1) 230 (27.9) 98 (15.3) 172 (19.1) <0.001

Recanalization therapy 458 (17.1) 53 (17.0) 448 (23.4) 119 (14.4) 72 (11.2) 135 (15.0) <0.001

Values are expressed as mean±standard deviation, n (%), or medians (interquartile ranges).
NIHSS, National Institute of Health Stroke Scale; mRS, modified Rankin Scale; LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism. 
*Data were missing in 472 and 1 patients of the external test dataset-3 and clinical trial dataset, respectively; †Kruskal–Wallis test was used. 

Table 2. Agreements of stroke subtype classification between deep learning algorithm and stroke neurologists (experts)

Internal test
(n=311)

External test dataset 1 
(n=1,919)

External test dataset 2 
(n=824)

External test dataset 3 
(n=641)

Clinical trial dataset 
(n=900)

Deep learning 
algorithm vs. experts

Deep learning 
algorithm vs. experts

Deep learning 
algorithm vs. experts

Deep learning 
algorithm vs. experts

Deep learning algorithm 
vs. experts’ consensus

DWI-only algorithm

Percentage agreement (95% CI) 65.3 (60.0–70.6) 60.7 (58.5–62.9) 59.8 (56.5–63.2) 59.3 (55.5–63.1) 58.1 (54.9–61.3)

Cohen’s kappa (95% CI) 0.47 (0.39–0.56) 0.38 (0.34–0.41) 0.37 (0.32–0.42) 0.37 (0.31–0.43) 0.34 (0.29–0.39)

DWI+AF algorithm

Percentage agreement (95% CI) 79.1 (74.6–83.6) 73.7 (71.8–75.7) 74.0 (71.0–77.0) 73.9 (70.5–77.4) 72.9 (69.1–76.7)

Cohen’s kappa (95% CI) 0.68 (0.61–0.75) 0.57 (0.54–0.60) 0.59 (0.54–0.64) 0.59 (0.54–0.64) 0.57 (0.51–0.62)

Between experts

Percentage agreement (95% CI) 76.0 (74.0–79.0)

Cohen’s kappa (95% CI) 0.61 (0.57–0.65)

DWI, diffusion-weighted image; CI, confidence interval; AF, atrial fibrillation.



Vol. 26 / No. 2 / May 2024

https://doi.org/10.5853/jos.2024.00535 https://j-stroke.org 305 

gorithm yielded significantly lower CE probabilities for the 65 
cases than the DWI-only algorithm (mean±SD 0.66±0.10 vs. 
0.86±0.06, respectively; P<0.001 by paired t test). However, add-

ing the AF-absence information did not sufficiently lower the 
estimated CE probability to reclassify to LAA, probably due in 
part to the absence of the arterial stenosis information. Review-
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Figure 1. Receiver operating characteristic curves for subtype classification of ischemic stroke for by deep learning algorithm using DWIs and AF information. LAA, 
large artery atherosclerosis; AUC, area under the curve; SVO, small vessel occlusion; CE, cardioembolism; DWI, diffusion-weighted image; AF, atrial fibrillation.

Table 3. Confusion matrix for deep learning algorithm versus expert classification of stroke subtype using DWIs and AF information

Internal test dataset External test dataset 1 External test dataset 2 External test dataset 3 Clinical trial dataset

Prediction
Avg.

Prediction
Avg.

Prediction
Avg.

Prediction
Avg.

Prediction
Avg.

LAA SVO CE LAA SVO CE LAA SVO CE LAA SVO CE LAA SVO CE

Experts Experts’ consensus

LAA 106* 22 14 678* 179 187 291* 87 56 210* 49 41 LAA 300* 123 57

SVO 14 60* 1 66 151* 4 50 95* 9 54 165* 3 SVO 19 110* 2

CE 11 3 80* 61 7 586* 9 3 224* 17 3 99* CE 0 2 136*

Percentage 
  agreement

79.1 73.7 74.0 73.9 Percentage 
  agreement

72.9

Sensitivity 0.75 0.80 0.85 0.80 0.65 0.68 0.90 0.74 0.67 0.62 0.95 0.75 0.70 0.74 0.83 0.76 Sensitivity 0.63 0.84 0.99 0.82

Specificity 0.85 0.89 0.93 0.89 0.85 0.89 0.85 0.86 0.85 0.87 0.89 0.87 0.79 0.88 0.92 0.86 Specificity 0.93 0.80 0.90 0.88

PPV 0.81 0.71 0.84 0.79 0.84 0.45 0.75 0.68 0.83 0.51 0.78 0.71 0.75 0.76 0.69 0.73 PPV 0.94 0.47 0.70 0.70

NPV 0.80 0.93 0.94 0.89 0.67 0.96 0.94 0.86 0.70 0.91 0.98 0.86 0.75 0.87 0.96 0.86 NPV 0.58 0.96 1.00 0.85

Accuracy 0.80 0.87 0.91 0.86 0.74 0.87 0.87 0.82 0.75 0.82 0.91 0.83 0.75 0.83 0.90 0.83 Accuracy 0.73 0.81 0.92 0.82

For each stroke subtype, sensitivity, specificity, PPV, NPV, and accuracy were evaluated. The average value of each statistic was shown in the last column. 
DWI, diffusion-weighted image; AF, atrial fibrillation; LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism; Avg, average; PPV, 
positive predictive value; NPV, negative predictive value; AI, artificial intelligence.
*The values indicate that the results of the AI algorithm align with those of the experts or the experts’ consensus.
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ing five cases with the highest CE probabilities (blue dotted square 
in the left Supplementary Figure 5B) showed that four had large 
wedge-shaped territorial infarcts (Supplementary Figure 5C-F) 
while the other one had multiple infarcts in the posterior circu-
lation (Supplementary Figure 5G).

While stroke experts disagreed more on SVO strokes, the ex-
perts and the DWI+AF algorithm disagreed more on LAA strokes 
(Supplementary Table 2). Compared with LAA and LAA-NG 
strokes, LAA-BR and LAA-LC showed higher disagreements be-
tween the experts or between the experts’ consensus and the 
DWI+AF algorithm-based subtyping (Supplementary Table 3).

In the external test dataset 3 and the clinical trial dataset, 
where information regarding the time of image acquisition within 
the 7-day period was available, there was no significant differ-
ence in the classification performance of either the DWI-only 
algorithm or the DWI+AF algorithm (vs. expert consensus) be-
tween the early (within 24 hours from last known well) and late 
(24 hours–7 days) imaging groups (Supplementary Table 4).

 

DWI-based prediction of CE
When we divided subjects into deciles of the expected CE prob-
ability (estimated by the DWI-only algorithm; Supplementary 
Table 5), the observed frequency of the CE subtype determined 
by experts increased with a nearly linear fashion (P<0.001; Fig-
ure 3), showing good agreement. A similar trend was observed 

in all external test datasets. In the 8th, 9th, and 10th decile 
groups, approximately 40%–70% of subjects were shown to 
have CE strokes. Furthermore, in the clinical trial dataset, there 
was a strong correlation between the expected probability and 
observed frequency (P<0.001).

Discussion

In the present study, we developed a fully automated deep learn-
ing algorithm to classify ischemic stroke subtype using DWI and 
AF data from 2,998 ischemic stroke patients from three stroke 
centers. The deep learning algorithm was externally validated 
with three external datasets. The algorithm demonstrated good 
agreement with stroke experts, achieving Cohen’s kappa coeffi-
cients of 0.57–0.59 for three external datasets, which were lower 
than the value (0.68) for the internal dataset. Furthermore, the 
clinical trial also demonstrated that the AI classification of stroke 
subtypes was comparable to the expert consensus.

To date, few studies have developed deep learning algorithms 
to classify stroke subtypes. According to a study that exclusively 
utilized electronic medical records, deep learning algorithms 
demonstrated moderate agreement (kappa=0.57) when com-
pared with expert decisions.25 Another study reported that a deep 
learning algorithm to classify stroke subtypes using DWI showed 
an average accuracy of 81.9%.26 However, these investigations 

Internal test dataset

External test dataset 3

External test dataset 1

Clinical trial dataset 

External test dataset 2

DWIs
only

DWIs
only

DWIs
only

DWIs
only

DWIs
only

DWIs
+AF data

DWIs
+AF data

DWIs
+AF data

DWIs
+AF data

DWIs
+AF data

Figure 2. Alluvial plot depicting changes of stroke subtype classification after using AF data in addition to DWIs. Numbers indicates the number of patients in 
each stroke subtype. LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism; DWI, diffusion-weighted image; AF, atrial fibrillation.
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did not conduct an external validation. As described, the present 
study validated our deep learning algorithm in three different 
external datasets and in a clinical trial involving two hospitals. 
This represents the largest dataset and best external validation 
currently available in the literature, to our knowledge. In all da-
tasets, the deep learning algorithm achieved a similarly high 
mean accuracy (between 0.82 and 0.83), supporting its robust-
ness. It is notable that there was a comparable level of agree-
ment between the consensus of experts and deep learning pre-
dictions as there was between the experts themselves.

Studies have demonstrated that stroke subtypes are closely 
associated with the pattern and extent of ischemic lesions.2,27,28 
Cardioembolic strokes were associated with corticosubcortical 
single lesions, multiple lesions in anterior and posterior circula-
tions, and multiple lesions in multiple cerebral circulations (P= 
0.008).2 LAA stroke lesions were located more frequently in the 
same vascular territory than CE strokes.23,28 SVO stroke could be 
distinguished from other stroke subtypes based on distinctive 
morphological properties.27 Thus, our deep learning algorithm 
trained on extensive DWI data may infer morphological and geo-
metrical patterns associated with stroke etiologies. This could be 
one of the explanations for why, in the clinical trial dataset, the 
DWI+AF algorithm classified a CE stroke (with AF) as SVO and 

65 LAA strokes (without AF) as CE.
The training dataset and the three external datasets included 

CE cases with AF or other potential cardiac embolic sources, while 
the clinical trial dataset did not include CE cases with potential 
cardiac embolic sources other than AF. Undetermined strokes, 
such as large infarcts with both relevant large artery stenosis 
and AF or single small subcortical infarcts with AF, were exclud-
ed from all the datasets including the training dataset. Intrigu-
ingly, as depicted by the alluvial plot, our AI algorithms trained 
on this training dataset classified some AF-positive cases as non-
CE strokes in internal and external validations. Although further 
investigation is required, we speculate that the AI algorithms 
may have indeed identified AF-positive LAA strokes due to a 
covert source of artery-to-artery embolism such as non-signif-
icant (remnant) carotid stenosis or aortic atheroma, with AF 
acting as a bystander. Further studies are required to investigate 
how the presence or absence of vessel information, as well as 
AF information, affects our AI-based stroke subtyping, particu-
larly in distinguishing between artery-to-artery embolism-me-
diated LAA and AF-mediated CE.

Guidelines for secondary prevention of stroke underscore a 
tailored therapeutic approach based on stroke subtypes,29,30 rec-
ommending strict blood pressure management for SVO strokes,31 

Internal test dataset (n=331)

External test dataset 3 (n=641)
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Figure 3. Proportions of stroke subtypes determined by experts in each decile of increasing CE probability that was estimated by the DWI-only based deep 
learning algorithm. Using DWIs only, a deep learning algorithm estimated probabilities of CE stroke. Then, the probabilities of every case were categorized into 
deciles in each dataset. Bars indicate observed frequency of each stroke subtype determined by expert or experts’ consensus. Note that the proportion of CE 
stroke diagnosed rises proportionally with the estimated CE probability, suggesting that both human experts and the AI are examining the same underlying 
entity. LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism; DWI, diffusion-weighted image; AF, atrial fibrillation; AI, artificial in-
telligence.
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intensive antiplatelet and lipid-lowering therapy for LAA strokes,32-35 
and anticoagulant therapy for CE strokes.36 However, a quarter of 
strokes are classified as embolic stroke with undetermined source 
(ESUS).37 Repeated failures of randomized clinical trials to com-
pare the effectiveness of antiplatelets and direct oral anticoag-
ulants in preventing stroke in patients with ESUS38-40 have high-
lighted the need for new biomarkers or tools to identify people 
at high risk of CE stroke. A few machine learning algorithms us-
ing clinical and echocardiography data have demonstrated prom-
ising results in identifying individuals with an increased risk of 
AF within ESUS subjects.37,41 However, these algorithms relied on 
extensive data input such as patients’ demographics, vascular 
risk factors, comorbidities, vital signs, laboratory results, and echo-
cardiographic findings. The comprehensive data requirement 
poses a challenge in real-world scenarios, where data acquisition 
varies and resources are often limited. Our deep learning algo-
rithm identified CE strokes based solely on DWI, suggesting its 
potential clinical utility in predicting an occult cardioembolic 
source in ESUS without additional clinical and laboratory data. 

In the CRYSTAL-AF (Cryptogenic Stroke [CS] and Underlying 
AF) trial, stroke was classified as cryptogenic when the cause re-
mained uncertain after extensive diagnostic evaluation, includ-
ing 12-lead ECG, 24 hours or more of ECG monitoring, trans-
esophageal echocardiography, angiographic or ultrasonographic 
evaluation of intracranial and extracranial vessels, and screen-
ing for thrombophilic states (in patients <55 years of age).14 In 
this study, ECG monitoring with an insertable cardiac monitor 
detected AF in 12.4% of patients by 1 year.14 We hypothesize that 
AI algorithms can increase the yield of testing, by helping to se-
lect patients who are more likely to test positive for AF during 
long-term ECG monitoring. To test the hypothesis, further re-
search should investigate prospectively whether an occult car-
dioembolic source is more often found during post-ESUS or post-
CS follow-up in patients with higher CE probabilities predicted 
by our DWI-only algorithm. 

Including AF information changed the DWI-only algorithm-
based original categorization of stroke subtype in about 20% of 
cases, which highlights the importance of detecting AF. In the 
NAVIGATE ESUS (New Approach Rivaroxaban Inhibition of Fac-
tor Xa in a Global Trial Versus ASA to Prevent Embolism in Em-
bolic Stroke of Undetermined Source) trial, rivaroxaban failed to 
show superiority over aspirin in preventing recurrent ischemic 
stroke (4.7% per year in both groups).39 It was suggested that the 
eligibility assessment may not have effectively identified strokes 
due to embolism and that AF was not a major cause of recurrent 
stroke.39,42 Indeed, AF was identified in only 3% of the patients 
at a median follow-up of 5 months, although systematic screen-
ing for arrhythmia was not performed during the trial.39 How-

ever, the role of AF in patients with ESUS, whether it is the un-
derlying cause of the index stroke or not, and its effect on stroke 
recurrence remain unclear,43 requiring further investigations. In 
the NAVIGATE ESUS trial, about two-thirds of carotid plaques 
were present in the carotid artery ipsilateral to the index stroke, 
showing a strong trend of a higher risk of recurrent ischemic 
stroke.39 Thus, future ESUS trials for direct oral anticoagulants 
may have to exclude strokes due to carotid atherosclerosis.44 Our 
deep learning algorithms, which effectively classify stroke sub-
types using DWIs with or without AF data, would facilitate these 
research, such as by improving eligibility assessments.

Many disparity studies have shown that primary and compre-
hensive stroke centers provide different levels of care for treat-
ing ischemic strokes. In a recent study involving 750,594 stroke 
patients from 1,474 stroke centers,45 Chinese investigators found 
lower levels of care for quality measures such as thrombolysis, 
rehabilitation access, and medication at discharge, suggesting 
the need to increase the awareness on guideline-recommended 
treatments. In addition, a Korean study involving 10,399 patients 
from 201 healthcare facilities showed that approximately 40% 
of general hospitals provided relatively low quality stroke care 
(grade 3–5), while only one third of stroke patients received treat-
ment at grade 1 hospitals.46 Thus, we believe that our AI algo-
rithms with accuracy comparable to stroke experts (working in 
grade 1 hospitals) may assist physicians in appropriately triaging 
stroke patients, particularly in hospitals with limited resources. 
The algorithms allow more expert guidance to be available to 
caregivers in resource-poor circumstances and should help to 
provide more optimal care to stroke patients.

Our study has limitations. First, stroke experts typically deter-
mine ischemic stroke etiology by using clinical, angiographic, 
and laboratory data in a comprehensive manner. The validity of 
relying solely on DWI and AF information could be questioned. 
However, an earlier study demonstrated that TOAST diagnoses 
without DWI matched final diagnoses in 48%, improving to 
83% after DWI alone and to 94% after DWI plus magnetic res-
onance angiography,47 indicating that DWI features has a major 
impact on classification accuracy enhancement. Second, al-
though we validated the algorithm using multiple external da-
tasets of Korean stroke populations, further investigation is re-
quired for multi-ethnic populations. Third, due to the rarity of 
other determined stroke subtype, deep learning algorithms to 
identify this subtype are challenging to develop. Thus, further 
investigation with a larger sample size is required.

Conclusions

In conclusion, our deep learning algorithm trained on a large da-
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taset of DWI and AF information was able to classify ischemic 
stroke subtypes with a level of accuracy comparable to that of 
stroke experts. The AI algorithm, which performed well with the 
minimal data input in three different external test datasets and 
a multi-center clinical trial dataset, could be useful for stroke 
management by less experienced physicians or general practi-
tioners.

Supplementary materials

Supplementary materials related to this article can be found 
online at https://doi.org/10.5853/jos.2024.00535.
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Supplementary Methods

Magnetic resonance-based stroke subtype 
classification 
The magnetic resonance (MR)-based stroke subtype classifica-
tion that we previously developed18 is composed of the five fol-
lowing steps: (1) consideration of other determined etiology of 
stroke, (2) screening for small vessel occlusion (SVO) on diffu-
sion-weighted image (DWI), (3) consideration of relevant artery 
stenosis or occlusion, (4) consideration of recanalization status 
after thrombolytic therapy, and (5) consideration of follow-up 
recanalization status without thrombolytic therapy.

Step 1. Consideration of other determined etiology of stroke 
The other causes category includes patients with a diverse array 
of stroke mechanisms. Disorders included in this category are 
difficult to categorize into more homogenous groups. A patient 
who has a rare cause of ischemic stroke would be classified as 
“other determined cause” or “two or more undetermined causes 
(UD ≥2),” according to coexistence of other stroke etiology such 
as large artery atherosclerosis (LAA), SVO, and cardioembolism.

Step 2. Screening for SVO using DWI 
A single lesion with the largest diameter of ≤20 mm in an axial 
DWI for penetrating artery infarction of the basal ganglia, co-
rona radiata, thalamus, or pons would be classified as a SVO. If 
high-risk cardioembolic sources coexist, the subtype is classified 
as UD ≥2. If accompanied by relevant stenosis of a correspond-
ing cerebral artery on angiographic evaluation, including CT an-
giography, MR angiography, or conventional angiography, then 
it is classified as a “large artery atherosclerosis with lacunae.” 
Infarctions in the midline extending from the base of the pons 
into the tegmentum without significant relevant artery stenosis 
would be classified as “branch atheromatous disease (LAA-BR).”

Step 3. Consideration of relevant artery stenosis or occlusion 
Relevant arterial pathology was defined as stenosis or occlusion 
of arteries supplying the vascular territory of acute ischemic le-
sions detected on DWI. Stenosis less than 50% was also regard-
ed as being relevant when clinical syndromes, lesions patterns 
on DWI, and new imaging techniques such as high-resolution 
wall imaging supported its relevance. In cases of a single lesion 
with the largest diameter >20 mm or multiple lesions with no 
steno-occlusion of relevant artery on angiographic evaluation, a 
possibility of cardioembolic stroke should be considered. “Exten-

sive embolic source evaluation,” including 24-h Holter monitor-
ing (24-h Holter), transthoracic echocardiography, and trans-
esophageal echocardiography are recommended. Infarctions in 
which a definite cardioembolic source is not revealed despite a 
comprehensive work-up would be classified as “undetermined 
negative (UD-negative).” However, when relevant lesions are lo-
cated at the anterior choroidal artery territory, single territory of 
cerebellum, or medullar oblongata, where SVOs do not seem to 
be causing infarctions, traditional MRI techniques cannot de-
tect vascular pathologies of a relevant artery, and atheroscle-
rosis may be a dominant vascular pathology, the infarctions are 
classified as “large artery atherosclerosis with normal angiog-
raphy” instead of “UD-negative.”

When a relevant pathology of a corresponding artery is ob-
served, it is divided into stenosis and occlusion. If medical history 
or electrocardiography identifies high-risk cardioembolic sources 
with coexistence of relevant stenosis, then that infarction is clas-
sified as “UD ≥2.” When there is evidence of chronic occlusion, 
or no or low risk cardioembolic source with relevant stenosis, it 
is classified as “LAA.” Occlusion on pre-stroke angiographic eval-
uation, border zone infarction with clinical settings suggestive of 
hemodynamic failure, or recent (within 1 month of stroke onset) 
transient ischemic attack corresponding to occlusion site is con-
sidered as evidence for chronic occlusion.

Step 4. Consideration of recanalization status of occluded 
artery after recanalization therapy
If there is occlusion but no evidence of chronic occlusion and 
recanalization therapy, including mechanical thrombectomy, is 
performed, then the recanalization status after recanalization 
therapy should be considered. When residual stenosis exists, or 
angioplasty or stenting is performed for atherosclerotic steno-
occlusion, the underlying vascular pathology is considered pri-
marily as atherosclerotic. When occlusion is resolved completely, 
comprehensive cardioembolic work-up is recommended. In this 
situation, low-risk cardioembolic sources are regarded as ex-
plaining the etiology of stroke.

Step 5. Consideration of follow-up recanalization status 
of occluded artery without recanalization therapy
When there is occlusion and recanalization therapy is not per-
formed, follow-up angiographic evaluation is recommended and 
recanalization status on that evaluation guides further investi-
gation and determination of stroke subtypes. 
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Supplementary Table 2. Disagreement rates between experts and between experts’ consensus and the DWI+AF algorithm after stratification by stroke sub-
types in the clinical trial dataset 

Consensus subtype LAA SVO CE

Disagreement between experts 95/574 (16.6) 72/155 (46.5) 49/171 (28.7)

Disagreement between experts’ consensus and the DWI+AF algorithm 204/574 (35.5) 19/155 (12.3) 1/171 (0.6)

DWI, diffusion weighted image; AF, atrial fibrillation; LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism.

Supplementary Table 3. Sensitivity of the DWI+AF algorithm after stratification by subcategories of LAA

LAA LAA-BR LAA-LC LAA-NG P

Internal test dataset* 60/78 (76.9) 4/8 (50.0) 4/7 (57.1) 9/14 (64.3) 0.001ǁ

External test dataset 1† 357/519 (68.8) 87/157 (55.4) 36/75 (48.0) 17/22 (77.3) <0.001

External test dataset 2‡ 209/287 (72.8) 59/106 (55.7) 21/37 (56.8) 2/3 (66.7) <0.001ǁ

Clinical trial dataset§ 250/336 (74.4) 30/41 (73.2) 11/21 (52.3) 31/47 (66.0) <0.001

Agreement between experts in the clinical trial dataset§ 298/336 (88.7) 29/41 (70.7) 13/21 (61.9) 35/47 (74.5) <0.001

Data are presented as numbers classified as LAA by the DWI+AF algorithm/numbers of LAA subgroup by an expert or experts’ consensus (percentage). 
LAA, large artery atherosclerosis; LAA-BR, LAA–branch atheromatous disease; LAA-LC, LAA–lacune; LAA-NG, LAA–negative; DWI, diffusion-weighted image; 
AF, atrial fibrillation.
*Data were missing in 35 patients; †Data were missing in 271 patients; ‡Data were missing in 1 patient; §Data were missing in 129 patients; ǁFisher’s exact test 
was used.

Supplementary Table 1. Confusion matrix of ischemic stroke subtype classification by deep learning algorithms versus experts using DWI only (DWI-only 
algorithm)

Internal test dataset External test dataset 1 External test dataset 2 External test dataset 3 Clinical trial dataset

Prediction
Avg.

Prediction
Avg.

Prediction
Avg.

Prediction
Avg.

Prediction
Avg.

LAA SVO CE LAA SVO CE LAA SVO CE LAA SVO CE LAA SVO CE

Experts Experts’ consensus

LAA 79* 26 37 518* 201 325 236* 95 103 154* 55 91 LAA 290* 151 133

SVO 11 62* 2 41 165* 15 47 97* 10 48 170* 4 SVO 17 133* 5

CE 24 8 62* 143 29 482* 60 16 160* 46 17 56* CE 53 18 100*

Percentage
  agreement

65.3 60.7 59.8 59.3 Percentage
  agreement

58.1

Sensitivity 0.56 0.83 0.66 0.68 0.50 0.75 0.74 0.66 0.54 0.63 0.68 0.62 0.51 0.77 0.47 0.58 Sensitivity 0.51 0.86 0.58 0.65

Specificity 0.79 0.86 0.82 0.82 0.79 0.86 0.73 0.80 0.73 0.83 0.81 0.79 0.72 0.83 0.82 0.79 Specificity 0.79 0.77 0.81 0.79

PPV 0.69 0.65 0.61 0.65 0.74 0.42 0.59 0.58 0.69 0.47 0.59 0.58 0.62 0.70 0.37 0.56 PPV 0.81 0.44 0.42 0.56

NPV 0.68 0.94 0.85 0.82 0.57 0.96 0.84 0.79 0.59 0.91 0.86 0.79 0.63 0.87 0.87 0.79 NPV 0.47 0.96 0.89 0.78

Accuracy 0.68 0.85 0.77 0.77 0.63 0.85 0.73 0.74 0.63 0.80 0.77 0.73 0.63 0.81 0.75 0.73 Accuracy 0.61 0.79 0.77 0.72

For each stroke subtype, sensitivity, specificity, PPV, NPV, and accuracy were evaluated. The average value of each statistic was shown in the last column. 
DWI, diffusion-weighted image; LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism; Avg, average; PPV, positive predictive value; 
NPV, negative predictive value; AI, artificial intelligence.
*The values indicate that the results of the AI algorithm align with those of the experts or the experts’ consensus.
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Supplementary Table 4. Agreements of stroke subtype classification between deep learning algorithm and stroke neurologists (experts) after stratification 
by onset-to-imaging time

External test dataset 3 Clinical trial dataset

Onset-to-imaging within 
24 hours (n=412)

Onset-to-imaging between 
24 hours–7 days (n=229)

Onset-to-imaging within 
24 hours (n=595)

Onset-to-imaging between 
24 hours–7 days (n=305)

Deep learning algorithm 
vs. experts

Deep learning algorithm 
vs. experts

Deep learning algorithm 
vs. experts’ consensus

Deep learning algorithm 
vs. experts’ consensus

DWI-only algorithm

Percentage agreement (95% CI) 57.0 (52.2–61.8) 63.3 (57.0–69.6) 61.2 (57.3–65.1) 58.7 (53.1–64.3)

Cohen’s kappa (95% CI) 0.35 (0.27–0.42) 0.40 (0.31–0.50) 0.40 (0.35–0.46) 0.38 (0.30–0.46)

DWI+AF algorithm

Percentage agreement (95% CI) 73.5 (69.3–77.8) 74.7 (69.0–80.4) 75.6 (72.2–79.1) 74.1 (69.2–79.0)

Cohen’s kappa (95% CI) 0.59 (0.53–0.66) 0.57 (0.48–0.67) 0.62 (0.57–0.67) 0.55 (0.47–0.63)

Between experts

Percentage agreement (95% CI) 76.7 (73.2–80.1) 74.8 (69.9–79.7)

Cohen’s kappa (95% CI) 0.60 (0.55–0.66) 0.52 (0.43–0.60)

DWI, diffusion-weighted image; CI, confidence interval; AF, atrial fibrillation.

Supplementary Table 5. Mean probability of CE after decile stratification in the datasets for internal testing, external testing, and clinical trial 

Decile
Probability of CE (%)

Internal test dataset External test dataset 1 External test dataset  2 External test dataset  3 Clinical trial dataset

1 0.5 (0.2–0.8) 1.2 (0.3–2.1) 0.8 (0.3–1.2) 0.5 (0.2–0.8) 0.6 (0.2–0.9)

2 1.2 (0.8–1.6) 3.0 (2.1–4.0) 1.6 (1.3–2.1) 1.0 (0.8–1.2) 1.2 (0.9–1.7)

3 2.1 (1.6–2.5) 5.5 (4.0–7.4) 2.9 (2.2–3.8) 1.6 (1.2–2.1) 2.3 (1.7–2.9)

4 4.3 (2.6–6.5) 10.4 (7.5–14.4) 5.2 (3.9–7.1) 2.7 (2.1–3.5) 3.8 (3.0–5.0)

5 10.3 (6.5–15.4) 21.4 (14.4–30.3) 9.8 (7.2–13.2) 4.6 (3.5–6.0) 6.9 (5.1–9.7)

6 23.6 (15.8–31.1) 41.8 (30.3–54.3) 20.5 (13.4–30.0) 9.2 (6.1–14.0) 14.6 (9.7–20.2)

7 40.3 (31.3–51.7) 66.1 (54.4–75.5) 42.7 (30.2–56.2) 20.9 (14.3–28.1) 30.5 (20.2–40.3)

8 62.8 (51.8–72.3) 81.3 (75.5–85.8) 68.4 (57.2–78.7) 42.5 (28.3–58.2) 52.2 (40.7–64.0)

9 78.3 (72.6–86.5) 88.6 (85.8–90.7) 84.7 (79.1–89.3) 70.2 (58.4–79.5) 75.0 (64.4–83.0)

10 91.0 (86.6–96.1) 93.0 (90.7–96.9) 92.9 (89.5–97.8) 87.0 (79.5–96.0) 89.9 (83.3–96.0)

Data are presented as mean (minimum–maximum). 
CE, cardioembolism.
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Supplementary Figure 1. Study flowchart. MRI, magnetic resonance imaging; LAA, large artery atherosclerosis; SVO, small vessel occlusion.
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Supplementary Figure 2. MRI-based algorithm for subtype classification of ischemic stroke. (A) Step 1: consideration of other determined etiology of stroke. 
(B) Step 2: screening for SVO using MRI. (C) Step 3: consideration of relevant artery stenosis or occlusion. (D) Step 4: consideration of recanalization status of 
occluded artery after recanalization therapy. (E) Step 5: consideration of follow-up recanalization status of occluded artery without recanalization therapy. *If 
one of three examinations (TTE, 24-hr Holter monitoring, and TEE [or MDCT]) was not performed, then the patient was classified as ‘undetermined incom-
plete’; †The follow-up vascular status would be evaluated by MR/CT angiography or transcranial Doppler. If no examinations are performed, then the patient 
should be classified as ‘undetermined incomplete.’ LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism; UD, undetermined cause; 
UD ≥2, undetermined with two or more causes; DWI, diffusion weighted imaging; Hx, history; ECG, electrocardiography; LAA-LC, large artery atherosclerosis 
with lacunae; LAA-BR, branch atheromatous disease; W/U, work-up; TTE, transthoracic echocardiography; TEE, transesophageal echocardiography; MDCT, 
multi-detector row computed tomography; Ant, Anterior; LAA-NG, large artery atherosclerosis with normal angiography; F/U, follow-up; MRI magnetic reso-
nance imaging. Modified with permission from Ko et al. J Stroke 2014;16:161-172.7
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Supplementary Figure 3. Deep learning model to classify stroke subtype. We condensed the segmented infarct mask on DWI into three images in each of 
the X, Y, and Z-axis planes in order to ensure consistent input regardless of the number of DWI slices. Images were resized and then fed into EfficientNetV2 
(A). The table in the lower left corner provided a summary of the details of each layer. The final layer generated probability for each subtype of stroke. To in-
corporate atrial fibrillation, we concatenated a binary value (0 or 1) representing its presence to previous outputs and then applied additional fully connected 
layers (B). DWI, diffusion-weighted image; LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism; AF, atrial fibrillation. 

A

B

DWI-only algorithm

DWI+AF algorithm
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Supplementary Figure 4. Receiver operating characteristic curves for subtype classification of ischemic stroke by the deep learning algorithm using DWIs. 
LAA, large artery atherosclerosis; AUC, area under the curve; SVO, small vessel occlusion; CE, cardioembolism; DWI, diffusion-weighted image.

LAA

SVO

CE

Internal test dataset External test dataset 1 External test dataset 2 External test dataset 3 Clinical trial dataset 
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Supplementary Figure 5. Representative cases misclassified by the DWI+AF algorithm in the clinical trial dataset. (A) A CE case misclassified as SVO by the 
DWI+AF algorithm, showing a single small infarct in the right striatocapsular area and a tiny cortical infarct. (B-G) Scatter plots showing probabilities of CE 
estimated by the DWI-only and the DWI+AF algorithms for cases misclassified as CE (B; gray dots and red bars represent individual cases and group means, 
respectively) and review of five cases (C-G) in the blue dotted squares in B (cases with highest CE probabilities on estimation by the DWI+AF algorithm). DWI, 
diffusion-weighted image; AF, atrial fibrillation; LAA, large artery atherosclerosis; SVO, small vessel occlusion; CE, cardioembolism.
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