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Background and Purpose The accurate prediction of functional outcomes in patients with acute 
ischemic stroke (AIS) is crucial for informed clinical decision-making and optimal resource utilization. 
As such, this study aimed to construct an ensemble deep learning model that integrates multimodal 
imaging and clinical data to predict the 90-day functional outcomes after AIS.
Methods We used data from the Korean Stroke Neuroimaging Initiative database, a prospective 
multicenter stroke registry to construct an ensemble model integrated individual 3D convolutional 
neural networks for diffusion-weighted imaging and fluid-attenuated inversion recovery (FLAIR), 
along with a deep neural network for clinical data, to predict 90-day functional independence 
after AIS using a modified Rankin Scale (mRS) of 3–6. To evaluate the performance of the ensemble 
model, we compared the area under the curve (AUC) of the proposed method with that of individual 
models trained on each modality to identify patients with AIS with an mRS score of 3–6.
Results Of the 2,606 patients with AIS, 993 (38.1%) achieved an mRS score of 3–6 at 90 days 
post-stroke. Our model achieved AUC values of 0.830 (standard cross-validation [CV]) and 0.779 
(time-based CV), which significantly outperformed the other models relying on single modalities: 
b-value of 1,000 s/mm2 (P<0.001), apparent diffusion coefficient map (P<0.001), FLAIR (P<0.001), 
and clinical data (P=0.004).
Conclusion The integration of multimodal imaging and clinical data resulted in superior prediction 
of the 90-day functional outcomes in AIS patients compared to the use of a single data modality. 
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Introduction

Acute ischemic stroke (AIS) results in long-term functional dis-
ability, inflicting significant social and economic burdens.1 Ac-
curate prediction of stroke functional outcomes is important to 
achieve informed clinical decision-making and improve patients’ 
quality of life.2 However, this prediction is difficult because of 
the heterogeneous nature of post-stroke disability.3 Stroke func-
tional outcome is influenced by various factors, encompassing 
clinical aspects such as age,3 patient characteristics,4 cognition,5 
treatment,6 comorbidities,7 stroke severity,8 and even imaging 
biomarkers.9,10 Widely used prognostic systems, including Isch-
emic Stroke Predictive Risk Score11 or Acute Stroke Registry and 
Analysis of Lausanne,12 incorporate some of these clinical factors 
to predict stroke functional outcomes. However, the selective in-
clusion of clinical factors may lead to missing important infor-
mation and failing to consider patient-specific details.

Machine learning (ML) and deep learning (DL) have achieved 
significant success in the field of medicine, offering a broad range 
of variables and algorithms. ML methods, such as support vec-
tor machines, decision trees, random forests, and deep neural 
networks, have been used to predict stroke functional outcomes, 
demonstrating improved performance compared to traditional 
risk scores.13,14 However, these models mainly rely on clinical data, 
and do not incorporate imaging data, which contain valuable 
information for predicting stroke outcomes, such as the extent 
of tissue damage, penumbra, and collateral circulation. Recent 
studies have demonstrated the feasibility of incorporating im-
aging data into ML/DL models to predict stroke outcomes; how-
ever, most focused on selective populations undergoing reperfu-
sion treatment, thus limiting their generalizability.15-19 Furthermore, 
studies focusing on the general AIS population have predomi-
nantly focused on single-modality data from a single center.20,21

This study aimed to predict long-term functional outcomes in 
AIS patients using a comprehensive model. The proposed model 
combines multiple magnetic resonance (MR) scans and clinical 
data from multiple centers. This ensemble model enhanced the 
performance, minimized biases, and reduced variations in the 
prediction results. Interpretability methods were employed to 
visualize the decision-making process based on unique patterns 
observed in the input data.

Methods

Data collection
Data were obtained from the Korean Stroke Neuroimaging Ini-
tiative (KOSNI) Registry, a prospective observational study con-
ducted at 18 tertiary stroke centers in South Korea over an 8-year 

period (2011–2018). The study protocol was approved by the In-
stitutional Review Board of Asan Medical Center (IRB number: 
2013-0162), and informed consent was obtained from all par-
ticipants. The inclusion criteria for enrollment in the KOSNI reg-
istry were as follows: (1) individuals aged >20 years and (2) those 
presenting with neurological symptoms indicative of stroke, in-
cluding transient ischemic attacks (TIAs).

Of the 5,018 patients, 2,606 were eligible after applying the 
following exclusion criteria: (1) missing the 90-day modified 
Rankin Scale (mRS),22 (2) presentation >24 hours after stroke 
onset, (3) absence of stroke lesions in baseline images, and (4) 
poor image quality or image preprocessing failure (Figure 1). De-
scriptive statistics comparing baseline characteristics between 
the study population and excluded participants are provided in 
Supplementary Table 1. The study defined binarized 90-day mRS 
outcomes >2, identifying stroke patients who required assistance 
for daily activities due to functional limitations.23 Among the 
patients, 1,613 (61.90%) exhibited an mRS of 0–2, whereas 993 
(38.10%) achieved an mRS of 3–6 at 90 days post-stroke.

Image data preprocessing
Baseline MR encompassed two subtypes of diffusion-weighted 
imaging (DWI): DWI with a b-value of 1,000 s/mm2 (b1000) and 
apparent diffusion coefficient (ADC) map, and fluid-attenuated 
inversion recovery (FLAIR).

Data pre-processing for raw MR scans involved the following 
steps: N4 bias field correction24 was applied to each modality, 
followed by skull stripping using a brain mask derived by K-means 
clustering. The DWI images (b1000 and ADC map) were aligned 
to the Montreal Neurological Institute 152 (MNI 152) space, with 
2-mm isotropic voxels using the ANTs SyN registration algo-
rithm.25 The FLAIR images were subjected to linear coregistra-
tion to align each volume with the DWI space within the sub-
jects. The images were then aligned to a standard space using 

Total patients
(n=5,018)

Study population
(n=2,606)

Missing 90-day mRS value (n=895)

Visiting after 24 hours from onset (n=1,459)

Without stroke lesions (n=6)

Image preprocessing failed (n=52)

Figure 1. Inclusion and exclusion criteria. Flowchart showing the inclusion 
and exclusion criteria. mRS, modified Rankin Scale.
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DWI deformation. The voxel intensity values in each image were 
normalized to ensure they fell within the range of 0–1.

Clinical data preprocessing
The clinical variables comprised 22 demographic and clinical 
features: age; sex; previous history of hypertension, diabetes, 
hyperlipidemia and stroke (including TIAs); current smoking sta-
tus; body mass index (BMI); systolic blood pressure; diastolic blood 
pressure (DBP); hematocrit level; hemoglobin level; blood glucose 
level; creatinine level; total cholesterol level; high-density lipo-
protein cholesterol (HDL-C); low-density lipoprotein cholesterol; 
total National Institutes of Health Stroke Scale (NIHSS)8 at ad-
mission; duration between stroke onset and admission; reperfu-
sion therapy status; risk status of cardiac embolic sources; and 
Trial of ORG 10172 in Acute Stroke Treatment (TOAST)26 subtypes, 
including large-artery atherosclerosis, cardioembolism, small-ves-
sel occlusion, other determined etiology, and undetermined etiol-
ogy. Notably, each variable exhibited less than 5% missing data.

In the preprocessing of clinical variables, categorical features 
such as sex, past medical history, reperfusion therapy status, and 
TOAST subtypes were subjected to label encoding. Simple mode 
imputation was further applied to categorical variables with 
missing values. Conversely, all continuous variables were scaled 
according to the interquartile range (IQR), without any additional 
feature engineering, and imputed with the median value in cases 
where missing values were present. 

Proposed approach

Model architecture
The prognostic model framework presented in Figure 2A in-
volved the training of four different models using distinct mo-
dalities: clinical data, b1000, ADC map, and FLAIR. Supplemen-
tary Table 2 presents the hyperparameter details for each model.

For the clinical data, we employed a simple, fully connected 
neural network (FCN) consisting of three layers with eight hid-
den units. This FCN was trained using the Adam optimizer27 and 
dropout regularization was applied to prevent overfitting.

By contrast, we used the 3D implementation version of ResNeXt28 
to extract features from the entire MR image. To enhance the per-
formance, we incorporated the Convolutional Block Attention 
Module (CBAM)29 after each ResNeXt block (Supplementary Fig-
ure 1A). CBAM is a lightweight and versatile attention mecha-
nism that enables the model to focus on both spatial and channel 
features in the output feature map. It comprises two sequential 
submodules: a channel attention module and spatial attention 
module (Supplementary Figure 1B).

The channel attention module filters important information 

by passing the input feature maps through max-pooling and 
average-pooling layers, followed by a fully connected layer. The 
sigmoid function was applied to obtain the channel attention 
map MC as follows:

, (1) 

where F denotes the input feature map; σ, the sigmoid function; 
and MLP, the multilayer perceptron in the channel attention 
module.

The spatial attention module uses the output attention map 
of the channel attention module to identify locations of mean-
ingful information. The input features sequentially undergo max 
pooling, average pooling, and convolutional layers to generate 
the spatial attention map MS:

           ,  (2) 

where f7×7 denotes convolutional operation in spatial attention 
module.

Following ResNeXt-CBAM, the extracted features comprised 
2,048 nodes for the final classification. Class probability was ob-
tained using the sigmoid function for the dichotomized mRS.

To ensure fast convergence and robust training, we used the 
Rectified Adam30 optimizer with cosine-annealing learning rate 
scheduling.31 To prevent overfitting, additional strategies were 
employed, including early stopping and RandAugment,32 a sto-
chastic automated data augmentation method that applies sev-
eral transformation methods (Supplementary Figure 2).

The dataset used in this study exhibited a class imbalance, 
which could introduce bias toward the majority class during 
training. To mitigate this issue, we used focal loss33 in each sin-
gle-modality model, which is a modified version of the cross-
entropy loss that downweighs the loss assigned to well-classi-
fied examples.

Data fusion between baseline models
To improve model performance, we employed a data-fusion tech-
nique using a weighted average method. This approach com-
bines probability vectors obtained from each model. The weights 
for the fusion were determined using the differential evolution 
method by optimizing the maximum F1 value of the ensemble 
model. Equation (3) illustrates the computation of the output 
probability distributions pi of the single-modality model using 
the fusion weight wi, where n denotes the number of models.

                                       . (3)
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Output classes can be effectively determined by generating a 
hybrid probability distribution with optimized weights (Supple-
mentary Table 3). The final mRS prediction was derived by ap-
plying a threshold of 0.45 to calibrate the predicted probabilities 
on an imbalanced dataset, which was determined by maximiz-
ing the F1 score of the results from 5-fold cross validation.

Evaluation
We randomly selected 20% of the entire dataset as the test set 
to ensure that the distribution of output classes was identical 
to the remaining data. We employed two distinct approaches 
for model training and evaluation: standard k-fold cross-valida-
tion (CV) and time-based k-fold CV (Figure 2B). In the standard 
approach, a stratified 5-fold CV was used to maintain consistent 
proportions of output classes in each fold. In contrast, time-based 
k-fold CV adopts sliding window CV, a resampling technique used 
to manage time-series data. After sorting all data by admission 
date, the training data were split into multiple training and vali-
dation subsets. The window size was set to 1,000 instances in 
each round, and each window was divided into training and 
validation sets with an 80:20 split. In particular, the validation 
consistently preceded the training set.

We assessed the performance of the models by measuring sen-
sitivity, specificity, positive predictive value (PPV), negative pre-
dictive value, F1 score, and area under the curve (AUC). The AUC 

was the primary metric. To compare our model with baseline 
models, we conducted a DeLong test to identify any statistically 
significant differences based on the models trained on the en-
tire training dataset. The significance level for statistical tests 
was set at P<0.05. We further calculated 95% confidence in-
tervals (CI) using 200 bootstrap samples.

To gain insight into the decision-making processes of each 
model, we used two explainable AI methods. For the clinical data 
model, we used the kernel Shapley Additive Explanation (SHAP)34 
to estimate the contribution of each input feature. SHAP calcu-
lates global feature importance by averaging the contributions 
through sample permutation. For the imaging data, we used 
Grad-CAM35 to visualize significant brain regions and classify 
mRS outcomes. Grad-CAM determines the weights of the fea-
ture maps based on model information using the global average 
of the gradient. We obtained voxel-wise average heat maps us-
ing Grad-CAM for all AIS patient samples in the test data, and 
defined the region of interest (ROI) by applying a 50% threshold 
of voxel intensities. To identify the concentrated areas within 
the ROI mask, we used automated anatomical labeling to iden-
tify specific brain regions.

Experimental setup
All experiments were conducted on a Linux Ubuntu 20.04 LTS 
workstation with an Intel CPU i9-9940X 3.30 GHz, two NVIDIA 

Figure 2. Multimodal classification scheme. (A) Overview of the multimodal classification scheme. Four different modality models (b1000, ADC map, FLAIR, 
and clinical data) were trained using the training data during the Train phase. These trained models were subsequently applied to the test data in the Predict 
phase, generating modality-specific outputs referred to as P. To obtain the final classification result, the weighted sum of the modality-specific outputs P was 
computed, with the weights (denoted as w) optimized during the training process. (B) Training and evaluating the model followed a dual scheme, comprising 
standard and time-based k-fold CV. b1000, b-value of 1,000 s/mm2; mRS, modified Rankin Scale; ADC, apparent diffusion coefficient; FLAIR, fluid-attenuated 
inversion recovery.

A

B

Train Predict Data fusion

90-day mRS >2 ?

Standard k-fold cross validation Time based k-fold cross validation

Time

Training set

Validation set
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GeForce GTX 2080Ti graphics cards, and 64 GB of RAM. The DL 
models were implemented and trained in Python 3.8.10 using 
TensorFlow36 2.9.0. For image processing, OpenCV37 4.7.0 and 
scikit-image38 0.19.3 were used. The scikit-learn39 1.1.3 package 
was used for model evaluation and training. The interpretability 
of the clinical data model was visualized using the SHAP34 0.41.0 
package. Grad-CAM-derived ROI-to-brain anatomy mapping was 
analyzed using the AtlasQuery tool of the FMRIB Software Li-
brary40 based on the MNI structural atlas, Harvard–Oxford cortical 
structural atlas, and Harvard–Oxford subcortical structural atlas.

Results

Subjects 
The study population comprised 2,606 patients selected from 
the total registry. Comparison of the baseline characteristics be-
tween the study population and excluded participants showed 
statistically significant differences in 9 features: age, history of 
diabetes and hyperlipidemia, DBP, Hematocrit, HDL-C, admission 
NIHSS, reperfusion therapy status, and TOAST subtypes (Supple-
mentary Table 1).

Supplementary Table 4 presents the clinical and demograph-
ic characteristics of patients. The median age and baseline NI-
HSS score were 70 years (IQR, 61–76) and 5 (IQR, 2–10), respec-
tively. After 90 days, 993 (38.1%) patients had poor functional 
outcomes (mRS score, 3–6), whereas 1,613 (61.9%) did not. Of 
those with poor functional outcomes, 795 belonged to the train-
ing group and 198 to the test group. No clinical inputs exhibit-
ed significant differences between the training and test groups 
(all P>0.05).

Prediction performance
Table 1 and Supplementary Table 5 present the average results 
of the standard 5 and time-based 5-fold CV for the evaluation 
of the performance of the proposed multimodal model in the 
prediction of functional outcomes. Compared to models trained 

with single modalities, our model consistently achieved the high-
est performance, with an AUC of 0.830 in standard CV, and 0.779 
in time-based CV (95% confidence interval [CI]: 0.740, 0.844). 
All baseline models based on a single MR scan exhibited lower 
AUC values than our ensemble model.

The receiver operating characteristic curve (ROC) plot illustrat-
ed that the ensemble model outperformed those trained using 
a single modality. The proposed model showed a statistically sig-
nificant improvement over clinical data (P=0.004), b1000 (P< 
0.001), ADC map (P<0.001), and FLAIR (P<0.001) on comparison 
of the ROC curves in the DeLong test (Figure 3).

Interpretable model analysis
In the clinical data model, SHAP values quantified the contri-
bution of each feature (Figure 4) to the model results. Analysis 

Table 1. Performance of standard 5-fold CV with bootstrapped 95% CIs

Clinical b1000 ADC FLAIR Ensemble

AUC 0.814 (0.662–0.830) 0.748 (0.687–0.763) 0.713 (0.633–0.729) 0.731 (0.610–0.748) 0.830 (0.740–0.844)

F1 0.689 (0.577–0.722) 0.624 (0.568–0.637) 0.596 (0.511–0.620) 0.610 (0.517–0.651) 0.696 (0.619–0.722)

SEN 0.709 (0.661–0.803) 0.643 (0.572–0.776) 0.652 (0.532–0.751) 0.697 (0.557–0.808) 0.759 (0.671–0.818)

SPE 0.787 (0.432–0.794) 0.745 (0.501–0.833) 0.673 (0.492–0.723) 0.643 (0.351–0.716) 0.743 (0.576–0.791)

PPV 0.670 (0.454–0.694) 0.611 (0.491–0.678) 0.550 (0.464–0.574) 0.545 (0.432–0.557) 0.643 (0.527–0.682)

NPV 0.815 (0.764–0.852) 0.775 (0.739–0.799) 0.760 (0.697–0.784) 0.779 (0.699–0.827) 0.834 (0.781–0.858)

Classification performance of standard 5-fold CV experimental results (mean and 95% CI). We reported the following metrics for each model: AUC, F1 score, 
SEN, SPE, PPV, and NPV. The CIs for the model performance were calculated by bootstrapping samples. 
CV, cross-validation; CI, confidence interval; b1000, b-value of 1,000 s/mm2; ADC, apparent diffusion coefficient; FLAIR, fluid-attenuated inversion recovery; 
AUC, area under the curve; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.

Figure 3. ROC curves for the proposed ensemble and single-modality mod-
els. b1000, b-value of 1,000 s/mm2; ADC, apparent diffusion coefficient; 
FLAIR, fluid-attenuated inversion recovery; ROC, receiver operating charac-
teristic curve.
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using SHAP values revealed that age and baseline NIHSS score 
were the most influential features, whereas other clinical fea-
tures had relatively minor impacts.

The image models generated average ROI heat maps using 
Grad-CAM, focusing on the infarcted area in the left hemisphere 
(Figure 5). Analysis of the different classification groups, true pos-
itive (TP), true negative (TN), false positive (FP), and false nega-
tive (FN), revealed a consistent ROI, but the intensity in the ROI 
for TN, FP, and FN was weaker than that for TP (Supplementary 
Figure 3). The precise anatomical locations of the ROI were con-
sistent with the findings in the left cerebellum and temporo–
occipital regions.

Discussion

In this study, we developed an ensemble DL model combining 
routinely collected multimodal imaging and clinical data to pre-
dict the functional outcomes of patients with AIS. Our approach 
involves the use of 3D CNN models to extract low-level features 
directly from high-dimensional input images combined with clini-
cal model outputs. This integration led to an improved perfor-

mance compared to the models trained by each single modali-
ty. Techniques such as image augmentation and focal loss were 
employed to minimize bias derived from data imbalance. Con-
sequently, the final ensemble model achieved an AUC of 0.830 
(standard CV) and 0.779 (time-based CV), outperforming the sin-
gle-modality models.

The key strength of our study was our use of data collected 
from a multicenter registry, which provided a diverse and repre-
sentative sample of patients with AIS. This broad coverage en-
abled training on various stroke types and locations, thus con-
tributing to an improved model performance. Furthermore, the 
inclusion of diverse imaging protocols from multiple centers adds 
robustness to the prediction output of the model.

While the ensemble model achieved the highest average per-
formance, the clinical- only model also showed good performance. 
However, it remains important to acknowledge the vulnerabili-
ty of clinical data to data drift, as indicated by the wide range 
of 95% CIs for the AUC (from 0.662 to 0.830), despite the uti-
lization of a multicenter data source. In contrast, our ensemble 
model exhibited robust performance, providing valuable mitiga-
tion against performance fluctuations caused by out-of-data dis-

Figure 4. Visualization of SHAP for clinical metadata. The distribution of the SHAP values is presented on the left, whereas the mean absolute SHAP values 
are presented on the right. All features used in the training were included. The features are presented in order of importance, with the most important fea-
tures at the top. The color scheme indicates the extent to which the feature values influence the outcome, with high values indicated in red. NIHSS, National 
Institutes of Health Stroke Scale; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipo-
protein cholesterol; BMI, body mass index; SBP, systolic blood pressure; SHAP, Shapley Additive Explanation. 

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.00 0.01 0.02 0.03 0.04 0.05 0.06

SHAP value Mean absolute SHAP value

Fe
at

ur
e 

va
lu

e

Admission NIHSS

Age

Hyperlipidemia

Total cholesterol

Hematocrit

TOAST

Glucose

Diabetes

Male

HDL-C

Reperfusion therapy

Current smoker

LDL-C

Creatinine

Risky embolic sources

Hemoglobin

BMI

Hypertension

Stroke history

SBP

Admission NIHSS

Age

Hyperlipidemia

Total cholesterol

Hematocrit

TOAST

Glucose

Diabetes

Male

HDL-C

Reperfusion therapy

Current smoker

LDL-C

Creatinine

Risky embolic sources

Hemoglobin

BMI

Hypertension

Stroke history

SBP
Low

High



https://doi.org/10.5853/jos.2023.03426

Jung et al.  Machine Learning for Functional Outcome of Stroke

318 https://j-stroke.org

tributions between the training and test sets. This stability makes 
the ensemble model particularly advantageous in real-world 
clinical settings with variations across different hospitals or im-
aging facilities.

To explore the relationship between the input data and poor 
functional outcomes, we conducted visual analyses using SHAP 
and Grad-CAM for each clinical and imaging input. The SHAP 
plot demonstrated a significant influence of age and NIHSS score 
on the prediction of functional outcomes based on clinical data, 
consistent with previous studies.15 Grad-CAM was used to show 
which brain regions the model focused on. Interestingly, the av-
erage Grad-CAM graphs included distinct brain areas, rather 
than entire lesions. These findings suggest that poor functional 
outcomes are correlated with the left cerebellum and temporo–
occipital region. Stroke functional outcomes were evaluated us-
ing the mRS, which evaluates the level of disability or depen-
dency in daily activities influenced by motor function, balance, 
and visual function. However, the NIHSS assigns fewer points to 
ataxia and visual function (two and three points, respectively, 
out of 42 NIHSS points) than to motor function (19 points, in-
cluding four points for each limb and three points for facial func-
tion). Consequently, given the significant clinical factors of age 
and the NIHSS score, in the context of imaging factors, the cer-

ebellum, which is responsible for balance control, and the tem-
poro–occipital cortex, which houses the optic pathway, may have 
been associated with unfavorable outcomes.

Despite these promising results, this study had several limi-
tations. First, our ensemble model was dependent on MR imag-
ing, making it unsuitable for use in many institutions that primar-
ily use CT-based imaging for stroke diagnosis. Thus, the application 
of our model may be limited to facilities with MRI capabilities. 
Furthermore, our data may have been subject to several biases. 
Our study population comprised patients who visited the stroke 
center within 24 hours of stroke onset, exhibiting higher base-
line severity, with an average admission NIHSS score of 5, com-
pared to 3 in the excluded group. This severity mismatch can af-
fect the distribution of each clinical feature between the study 
population and excluded patients, which could potentially limit 
the model generalizability.41 The lack of full lesion growth may 
also have negatively affected the performance of the model, as 
most images in the dataset were early baseline images. Similar 
research has reported improved results using day 1 follow-up im-
ages, in which the lesion sizes were clearly seen.21 Moreover, our 
model’s performance should be further validated in real-world 
settings as real-world data often show data drift due to varia-
tions in distribution over time or across different data sources.42 
Future studies should investigate the effects of these biases to 
provide more comprehensive insights.

Model training also encountered certain challenges. Training 
DL models from scratch is inherently difficult as they require ex-
tensive data, while small datasets can lead to overfitting. Al-
though we attempted to mitigate overfitting using techniques 
such as RandAugment and early stopping, the size of the data-
set remained limited. To address this, future studies should ex-
plore a transfer learning approach with a model pretrained on 
a larger external dataset, potentially improving the performance 
and mitigating overfitting. Another challenge during model train-
ing is the use of the entire image as an input, which may intro-
duce noise during model training. To overcome these issues, we 
employed an attention mechanism to enable the model to fo-
cus more on the ROI and generate accurate feature extractions. 
Despite these efforts, some cases still exhibit noise owing to in-
dividual differences in lesion size and location. Future research 
should include strategies to filter out these noises to improve 
the model performance.

Conclusions

In this study, we constructed a comprehensive model for pre-
dicting the 90-day functional outcomes using multiple MR mo-
dalities and clinical metadata from a multicenter registry. This 

Figure 5. The ROI was determined by applying a 50% intensity threshold 
to identify TPs. The selected slices are positioned at the following z coordi-
nates in the MNI 152 space in mm: -52, -32, -12. L and R denote left and 
right sides, respectively. b1000, b-value of 1,000 s/mm2; ADC, apparent dif-
fusion coefficient; FLAIR, fluid-attenuated inversion recovery; ROI, region 
of interest; TP, true positive; MNI 152, Montreal Neurological Institute 152.

b1000

R L

ADC FLAIR
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model was superior to other prediction models that rely on a 
single modality. 
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Supplementary Table 1. Baseline characteristics of included and excluded individuals in the study

Characteristics Total (n=5,018) Included (n=2,606) Excluded (n=2,412) P #NA

Age (yr) 69 (60–76) 70 (61–76) 69 (58–76) 0.001 1

Male sex 2,987 (59.53) 1,574 (60.40) 1,413 (58.58) 0.200 0

Hypertension 3,377 (67.30) 1,748 (67.08) 1,629 (67.54) 0.735 1

Diabetes 1,441 (28.72) 735 (28.20) 706 (29.27) <0.001 270

Hyperlipidemia 2,043 (40.71) 1,001 (38.41) 1,042 (43.20) <0.001 6

Current smoking status 1,776 (35.39) 906 (34.77) 870 (36.07) 0.354 3

Previous stroke including TIA 419 (8.35) 212 (8.14) 207 (8.58) 0.602 0

BMI (kg/m2) 23.53 (21.63–25.64) 23.5 (21.48–25.51) 23.61 (21.73–25.78) 0.070 120

SBP (mm Hg) 140 (129–160) 140 (130–160) 140 (128–160) 0.236 10

DBP (mm Hg) 84 (76–96) 86 (79–100) 82.5 (75–92) <0.001 9

Hematocrit (%) 40.6 (37.3–43.8) 40.4 (37.2–43.7) 40.85 (37.6–43.9) 0.010 23

Hemoglobin (g/dL) 13.8 (12.6–15) 13.8 (12.6–15) 13.9 (12.7–15.1) 0.190 8

Glucose (mg/dL) 126 (107–161) 126 (108–159) 125 (105–163) 0.390 11

Creatinine (mg/dL) 0.84 (0.7–1.01) 0.83 (0.7–1.01) 0.86 (0.7–1.01) 0.794 10

Total cholesterol (mg/dL) 176 (150–205) 176.5 (149–204.25) 176 (150–206) 0.548 25

HDL-C (mg/dL) 46 (38–55) 47 (38–56) 45 (37–54) <0.001 146

LDL-C (mg/dL) 112 (87–137) 112 (86–137) 111 (87–138) 0.917 118

Admission NIHSS 4 (2–9) 5 (2–10) 3 (1–5) <0.001 2

Reperfusion therapy 1,361 (27.12) 988 (37.02) 373 (15.88) <0.001 0

Risk of cardiac embolic sources 465 (9.27) 247 (9.48) 218 (9.04) 0.625 0

TOAST classification <0.001 28

LAA 1,424 (28.38) 675 (25.90) 749 (31.05)

CE 1,251 (24.93) 768 (29.47) 483 (20.02)

SVO 1,080 (21.52) 494 (18.96) 586 (24.30)

OE 169 (3.37) 63 (2.42) 106 (4.39)

UE 1,066 (21.24) 598 (22.95) 468 (19.40)

Baseline characteristics of the included and excluded individuals. Values are expressed as n (%) or medians (interquartile ranges). Statistical tests were con-
ducted using the Wilcoxon signed-rank test for continuous variables, the chi-square test for binary categorical variables, and Fisher’s exact test for multiple 
categorical variables. #NA column provides the actual numbers of each variable for missing data. 
TIA, transient ischemic attack; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; 
LDL-C, low-density lipoprotein cholesterol; NIHSS, National Institutes of Health Stroke Scale; TOAST, Trial of ORG 10172 in Acute Stroke Treatment; LAA, 
large-artery atherosclerosis; CE, cardioembolism; SVO, small-vessel occlusion; OE, other determined etiology; UE, undetermined etiology.
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Supplementary Table 2. Detailed hyperparameters for the imaging and 
clinical models

Hyperparameter  Value

Imaging data model (CBAM-ResNeXt50)

Batch size 8

Optimizer RAdam

Initial learning rate 0.001

Learning rate scheduler Cosine annealing scheduler  
  with warm restarts

Fraction of initial learning rate 0.5

Steps to decay over 30

Dropout 0.1

Loss function Binary focal loss

Output activation function Sigmoid

Image augmentation RandAugment

Number of operations 1

Magnitude 0.1

Clinical data model (FCN)

Batch size 32

Hidden layers 8-8-8

Activation function ELU

Optimizer Adam

Initial learning rate 0.001

Batch normalization True

Dropout 0.5

Loss function Binary focal loss

Output activation function Sigmoid

List of hyperparameters used in each model.
CBAM, Convolutional Block Attention Module; RAdam, Rectified Adam; 
FCN, fully connected neural network; ELU, Exponential Linear Unit.

Supplementary Table 3. Optimized weights of each modality

Modality Weight

Clinical 0.707

b1000 0.055

ADC 0.012

FLAIR 0.226

The weights given to each single modality model.
b1000, b-value of 1,000 s/mm2; ADC, apparent diffusion coefficient; FLAIR, 
fluid-attenuated inversion recovery.
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Supplementary Table 4. Baseline characteristics of the study subjects

Characteristics Total (n=2,606) 90-day mRS ≤2 (n=1,613) 90-day mRS >2 (n=993) P #NA

Age (yr) 70 (61–76) 67 (58–74) 73 (66–79) <0.001 1

Male sex 1,574 (60.40) 1,045 (64.79) 529 (53.27) <0.001 0

Hypertension 1,748 (67.08) 1,078 (66.83) 670 (67.47) 0.768 0

Diabetes 735 (28.20) 434 (26.91) 301 (30.31) 0.071 3

Hyperlipidemia 1,001 (38.41) 722 (44.76) 279 (28.10) <0.001 5

Current smoking status 906 (34.77) 601 (37.26) 305 (30.72) <0.001 2

Previous stroke including TIA 212 (8.14) 142 (8.80) 70 (7.05) 0.129 0

BMI (kg/m2) 23.5 (21.48–25.51) 23.71 (21.92–25.78) 23.12 (20.83–24.98) <0.001 88

SBP (mm Hg) 140 (130–160) 142 (130–160) 140 (120–160) <0.001 4

DBP (mm Hg) 86 (79–100) 88 (80–100) 83.5 (71–95) <0.001 3

Hematocrit (%) 40.4 (37.2–43.7) 41.1 (37.8–44.2) 39.4 (36.1–42.6) <0.001 13

Hemoglobin (g/dL) 13.8 (12.6–15) 14 (12.9–15.2) 13.4 (12.2–14.7) <0.001 3

Glucose (mg/dL) 126 (108–159) 123 (106–154) 132 (111–166) <0.001 6

Creatinine (mg/dL) 0.83 (0.7–1.01) 0.86 (0.7–1.02) 0.8 (0.7–1) 0.041 3

Total cholesterol (mg/dL) 176.5 (149–204.25) 177 (149–206) 175 (149–203) 0.266 14

HDL-C (mg/dL) 47 (38–56) 47 (38–56) 47 (38–57) 0.881 86

LDL-C (mg/dL) 112 (86–137) 112 (86–137) 111 (87–135.5) 0.512 71

Admission NIHSS 5 (2–10) 3 (1–6) 10 (5–15) <0.001 0

Duration between stroke onset and admission 4.04 (1.82–10.6) 4.32 (1.78–11.35) 3.83 (1.85–9.27) 0.089 0

Reperfusion therapy 988 (37.02) 471 (28.32) 517 (51.39) <0.001 0

Risk of cardiac embolic sources 247 (9.48) 151 (9.36) 96 (9.67) 0.849 0

TOAST classification <0.001 8

LAA 675 (25.90) 397 (24.61) 278 (28.00)

CE 768 (29.47) 405 (25.11) 363 (36.56)

SVO 494 (18.96) 395 (24.49) 99 (9.97)

OE 63 (2.42) 45 (2.79) 18 (1.81)

UE 598 (22.95) 365 (22.63) 233 (23.46)

Baseline characteristics of the study subjects, stratified by 90-day functional status (90-day mRS score >2 or not). Values are expressed as numbers (%) or 
medians (interquartile ranges). Statistical tests were conducted using the Wilcoxon signed-rank test for continuous variables, the chi-square test for binary 
categorical variables, and Fisher’s exact test for multiple categorical variables. #NA column provides the actual numbers of each variable for missing data. 
mRS, modified Rankin Scale; TIA, transient ischemic attack; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-den-
sity lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NIHSS, National Institutes of Health Stroke Scale; TOAST, Trial of ORG 10172 in Acute 
Stroke Treatment; LAA, large-artery atherosclerosis; CE, cardioembolism; SVO, small-vessel occlusion; OE, other determined etiology; UE, undetermined etiology.

Supplementary Table 5 . Average classification performance of the time-
based CV

Clinical b1000 ADC FLAIR Ensemble

AUC 0.745 0.728 0.694 0.669 0.779

F1 0.609 0.597 0.570 0.559 0.642

SEN 0.683 0.589 0.638 0.637 0.693

SPE 0.658 0.767 0.641 0.614 0.716

PPV 0.564 0.610 0.521 0.506 0.607

NPV 0.777 0.755 0.747 0.740 0.796

Average classification performance of the time-based 5-fold CV. The fol-
lowing metrics were reported for each model: AUC, F1 score, SEN, SPE, PPV, 
and NPV.
CV, cross-validation; AUC, area under the curve; SEN, sensitivity; SPE, spec-
ificity; PPV, positive predictive value; NPV, negative predictive value.
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Supplementary Figure 1. Overview of the image model architecture. (A) The Structure of the CBAM-ResNeXt residual block, where c denotes the channel 
size of the input and output features, b denotes the number of intermediate channels, and g indicates the cardinality size. (B) CBAM attention mechanism. 
Conv, convloutionaly layer; CBAM, Convolutional Block Attention Module.
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Supplementary Figure 2. An example of RandAugment. Sample images augmented by RandAugment with hyperparameters (Number of operations=1 and 
Magnitude=0.1).
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Supplementary Figure 3. The ROI were determined by applying a 50% intensity threshold to identify the following cases: (A) TNs, (B) FPs, and (C) FNs. The 
selected slices are positioned at the following z coordinates in the MNI 152 space in mm: -52, -32, -12. L and R denote left and right sides, respectively. 
b1000, b-value of 1,000 s/mm2; ADC, apparent diffusion coefficient; FLAIR, fluid-attenuated inversion recovery; ROI, region of interest; TN, true negative; FP, 
false positive; FN, false negative; MNI 152, Montreal Neurological Institute 152.
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