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Patients with hyperglycemia are at a high risk of cardio- and cerebrovascular diseases. Diabetes 
patients also have poor outcomes after cerebrovascular disease development. Several classes of 
drugs are used for diabetes management in clinical practice. Thiazolidinedione (TZD) was 
introduced in the late 1990s, and new antidiabetic agents have been introduced since 2000. After 
issues with rosiglitazone in 2007, the U.S. Food and Drug Administration strongly recommended 
that trials investigating cardiovascular risk associated with new antidiabetic medications should be 
conducted before drug approval in the United States, to prove the safety of these new drugs and to 
determine their superiority to previous medications. Currently, results are available from two studies 
with TZD focusing on cardiovascular diseases, including stroke, and from 12 cardiovascular 
outcome trials focusing on major adverse cardiovascular events associated with new antidiabetic 
agents (four with dipeptidyl peptidase-4 inhibitors, three with sodium-glucose cotransporter-2 
inhibitors, and five with glucagon-like peptide-1 analogues). These studies showed different results 
for primary cardiovascular outcomes and stroke prevention. It is important to determine whether 
prescription of TZD or new antidiabetic medications compared to conventional treatment, such as 
sulfonylurea or insulin, is better for stroke management. Furthermore, it is unclear whether drugs in 
the same class show greater safety and efficacy than other drugs for stroke management.
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Introduction

Diabetes management requires coordinated efforts to change 
the patient’s lifestyle to include a heathy diet and regular exer-
cise, and to manage multiple risk factors, to prevent or delay 
complications such as stroke.1-3 Patients with hyperglycemia or 
diabetes mellitus (DM) are at high risk of cerebrovascular isch-
emic stroke.4,5 DM is also associated with poor outcome in pa-
tients with cerebral hemorrhage.6 However, it is unclear 
whether it is better to prescribe intensive glucose-lowering 
treatment than conventional treatment for stroke manage-

ment, and whether specific antidiabetic agents are safer and 
more efficacious than other drugs for stroke management.

Here, we discuss the mechanisms underlying the relationship 
between glucose homeostasis and stroke development, and pro-
vide an overview of the efficacy of glucose-lowering treatment in 
stroke management. We also discuss evidence from recent large 
clinical trials of thiazolidinedione (TZD) and new antidiabetic 
medications such as dipeptidyl peptidase-4 (DPP4) inhibitors, so-
dium-glucose cotransporter-2 (SGLT2) inhibitors, and glucagon-
like peptide-1 (GLP1) analogues, which suggest the potential of 
these agents in primary and secondary stroke prevention.

http://crossmark.crossref.org/dialog/?doi=10.5853/jos.2019.00038&domain=pdf&date_stamp=2019-05-31
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Glucose metabolism and stroke

The association between DM and stroke involves the interplay 
of complex mechanisms, including various hemodynamic and 
metabolic pathways (Figure 1). DM is characterized by chronic 
low-grade inflammation, oxidative stress, endothelial dysfunc-
tion, hypercoagulability, dyslipidemia, and insulin resistance.7 
These factors contribute individually and collectively to diabet-
ic macrovascular complications. Three distinct pathways are 
involved in diabetes-associated increased vasculopathy: in-
creased production of advanced glycosylation end products 
(AGEs),8 increased reactive oxygen species (ROS) production 
and oxidative damage to vessels,9 and activation of the aldose 
reductase pathway, which is driven by high blood glucose con-
centration.10 Activation of protein kinase C (PKC) isozymes is 
also involved in diabetes-related vascular complications.10

High circulatory glucose concentrations facilitate the nonen-
zymatic glycosylation of proteins in the blood vessel walls, re-
sulting in AGE formation. Binding of AGE to its receptors ag-
gravates atherogenicity by accelerating oxidation and uptake 

of low density lipoprotein (LDL).8 Hyperglycemia stimulates the 
upregulation of AGEs. Moreover, nuclear factor κB and activa-
tor protein-1 increase proatherogenic gene expression and re-
cruit numerous mediators of atherogenesis, including white 
blood cells, adhesion molecules, monocyte chemoattractant 
protein-1, and other inflammatory cytokines.11 

Hyperglycemia-induced ROS generation and insulin resis-
tance damage vascular smooth muscle and endothelial cells.12 
Superoxide anions neutralize nitric oxide (NO) by forming per-
oxynitrite ions, which decrease the bioavailability of endotheli-
um-derived NO.13 This inhibits endothelium-mediated vasodila-
tion, stimulates abnormal platelet activation, and increases 
vascular smooth muscle cell proliferation and migration (Figure 
1). ROS also increases LDL oxidation in vessel walls.13 

Evidence suggests the role of PKC activation in hyperglycemia-
induced vascular and endothelial dysfunction.10 Glucose trans-
ported into vascular cells stimulates de novo synthesis of diacyl-
glycerol and PKC activation. PKC isoforms activation stimulates 
proatherosclerotic gene expression and vascular cell proliferation 
and migration, and impairs NO-mediated vasodilation. PKC acti-

Figure 1. Pathogenic mechanisms for the involvement of hyperglycemia in the development of atherosclerotic cerebrovascular diseases. VSMC, vascular 
smooth muscle cell; AGE, advanced glycosylation end product; ROS, reactive oxygen species; PKC, protein kinase C; eNOS, endothelial nitric oxide synthase; 
NO, nitric oxide; TG, triglyceride; HDL, high density lipoprotein; NFκB, nuclear factor κB; MCP-1, monocyte chemoattractant protein-1; PDGF, platelet-derived 
growth factor; TNF-α, tumor necrosis factor-α; VCAM, vascular cell adhesion molecule. 
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vation also increases vascular endothelial cell permeability.14

 The relationship between direct clinical risk factors and their 
roles in stroke development is illustrated in Figure 2. In addi-
tion to hyperglycemia and insulin resistance, high blood pres-
sure, dyslipidemia, and smoking are implicated in the patho-
genesis of stroke by increasing peripheral resistance and accel-
erating atherosclerosis. High urinary albumin excretion is an-
other independent predictor of stroke in diabetes patients.15 
These factors aggravate inflammation and increase oxidative 
stress, leading to endothelial dysfunction, increased thrombotic 
activity, and accelerated vascular smooth muscle cell prolifera-
tion and migration. These processes contribute to thrombus 
formation and plaque progression, which increase stroke risk. 

Diabetic autonomic neuropathy and retinopathy are also risk 
factors for stroke.16,17 Therefore, several clinical factors are in-
volved in increasing stroke risk. 

Ideal approach to decreasing the risk of 
cardiovascular outcomes in diabetes 
patients 

Evidence for the beneficial effects of intensive glycemic control 
in preventing cardiovascular diseases is inconclusive. However, 
intensive glycemic control as a part of a multifactorial inter-
vention for atherosclerotic risk factors was effective in reduc-
ing cardiovascular disease risk and overall mortality in the Ste-
no-2 study1,18 and cerebrovascular disease risk in the Japan Di-
abetes Outcome Intervention Trial 3 (J-DOIT3) study.19 The Ste-

no-2 trial was the first to investigate the impact of multifacto-
rial interventions in patients with type 2 diabetes (T2D), even 
though the sample size was small (n=160). Investigators treat-
ed study participants with multiple pharmacological agents 
and implemented lifestyle modifications that targeted hyper-
glycemia, hypertension, dyslipidemia, and microalbuminuria. 
This multifactorial intervention with intensive glycemic control 
(target glycosylated hemoglobin [HbA1c] level <6.5%) reduced 
the incidence of the composite cardiovascular endpoint (haz-
ard ratio [HR], 0.47; 95% confidence interval [CI], 0.24 to 0.73; 
P=0.008)18 and overall mortality (HR, 0.54; 95% CI, 0.32 to 
0.89; P=0.02).1 Another study involving Japanese patients with 
diabetes (the J-DOIT3 study) included an intensified interven-
tion with tight glycemic control (target HbA1c <6.2%). This 
study observed substantial benefit for cerebrovascular event 
prevention, including stroke and the need for carotid endarter-
ectomy, percutaneous transluminal cerebral angioplasty, and 
carotid artery stenting, compared with that associated with 
conventional therapy (target HbA1c <6.9%) in patients with 
T2D (HR, 0.42; 95% CI, 0.24 to 0.74; P=0.002).19 The success of 
multifactorial intervention trials in reducing atherosclerotic 
vascular disease risk suggests the complex multifactorial na-
ture of atherosclerosis. Therefore, focusing on a single risk fac-
tor may not be sufficient to alter its progression.

 Mechanistically, severe hypoglycemia may aggravate brain in-
jury20 because the brain uses glucose as its primary fuel. Intensive 
glucose lowering with antidiabetic medications that do not in-
duce hypoglycemia is helpful in stroke prevention. In addition, 
hyperglycemia increases stroke risk even in prediabetes patients.21 
Therefore, controlling hyperglycemia to achieve normal glucose 
levels may be beneficial to prevent cerebrovascular disease. 

TZD and new antidiabetic agents such as DPP4 inhibitors, 
SGLT2 inhibitors, and GLP1 analogues do not induce hypogly-
cemia. This may be why an active glucose-lowering approach 
with these agents was shown to be neutral (DPP4 inhibitors) or 
beneficial (TZD, SGLT2 inhibitors, and several GLP1 analogues) 
on cardiovascular outcomes compared with the effects of pre-
vious agents such as sulfonylurea and insulin. Optimal glucose 
control that does not induce hypoglycemia may therefore be 
the ideal approach to achieve better cerebrovascular outcomes.

Randomized controlled trials with TZD 
and new agents 

The results of stroke in randomized controlled trials (RCTs) with 
TZD and new antidiabetic agents are summarized in Table 1. 

Figure 2. Contributing risk factors and their roles in the development of 
stroke.
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TZDs
The beneficial effects of TZDs have been shown in clinical stud-
ies through carotid ultrasonography to measure carotid intima-
media thickness (IMT), a surrogate marker of cerebrovascular 
diseases. Carotid IMT progression was significantly attenuated 
after treatment with rosiglitazone, a TZD, for 48 weeks com-
pared with that after placebo treatment (–0.012 mm vs. 0.031 
mm, respectively; P=0.03) in non-diabetes patients.22 In pa-
tients with T2D, carotid IMT decreased significantly more after 
pioglitazone treatment for 24 weeks (–0.054 mm) than after 
glimepiride treatment (–0.002 mm, P<0.005).23 These changes 
were accompanied by insulin resistance attenuation. TZDs may 
therefore act as insulin sensitizers and play a role in preventing 
or regressing atherosclerosis, particularly in the carotid artery.

The PROspective pioglitAzone Clinical Trial In macroVascular 
Events (PROactive) study is a prospective, double-blind study of 
5,238 patients with T2D with a history of macrovascular dis-
ease. In this study, pioglitazone did not reduce composite car-

diovascular outcome risk, including death from any cause, 
nonfatal myocardial infarction, stroke, acute coronary syn-
drome, leg amputation, coronary revascularization, or leg re-
vascularization (HR, 0.90; event rate: 19.7% [514/2,605] for 
pioglitazone vs. 21.7% [572/2,633] for placebo; 95% CI, 0.80 
to 1.02).24 The rates of stroke did not differ between the two 
groups (HR, 0.81; event rate: 3.3% [86/2,605] in the piogli-
tazone group vs. 4.1% [107/2,633] in the placebo group; 95% 
CI, 0.61 to 1.07) (Figure 3). In a later analysis of patients from 
the PROactive study with previous stroke, the rate of fatal or 
nonfatal stroke events was significantly lower in the piogli-
tazone group than that in the placebo group (HR, 0.53; event 
rate: 5.6% in the pioglitazone group vs. 10.2% in the placebo 
group; 95% CI, 0.34 to 0.85).25

The Insulin Resistance Intervention after Stroke (IRIS) study 
evaluated the efficacy of pioglitazone in 3,876 non-diabetes 
patients who previously experienced ischemic stroke or tran-
sient ischemic attack (TIA).26 Pioglitazone therapy reduced the 

Table 1. Stroke events in recent cardiovascular outcome studies of antidiabetic medications

Drug (study name) Stroke events HR (95% CI)

TZD

Pioglitazone (PROactive)24 Stroke 0.81 (0.61–1.07)

Pioglitazone (IRIS)26* Stroke 0.82 (0.61–1.10)

DPP4 inhibitors

Saxagliptin (SAVOR-TIMI)30 Ischemic stroke 1.11 (0.88–1.39)

Alogliptin (EXAMINE)31 Nonfatal stroke 0.91 (0.55–1.50)

Sitagliptin (TECOS)32 Fatal or nonfatal stroke 0.97 (0.79–1.19)

Linagliptin (CARMELINA)33 Fatal or nonfatal stroke 0.91 (0.67–1.23)

SGLT2 inhibitors

Empagliflozin (EMPA-REG OUTCOME)35 Fatal or nonfatal stroke 1.18 (0.89–1.56)

Canagliflozin (CANVAS)36 Fatal or nonfatal stroke 0.87 (0.69–1.09)

Dapagliflozin (DECLARE-TIMI58)37 Ischemic stroke 1.01 (0.84–1.21)

GLP1 analogues

Lixisenatide (ELIXA)43 Stroke 1.12 (0.79–1.58)

Once weekly exenatide (EXSCEL)44 Fatal or nonfatal stroke 0.85 (0.70–1.03)

Liraglutide (LEADER)40 Fatal or nonfatal stroke, or TIA 0.86 (0.71–1.06)

Semaglutide (SUSTAIN-6)41 Nonfatal stroke 0.61 (0.38–0.99)

Albiglutide (HARMONY Outcome)42 Nonfatal stroke 0.86 (0.66–1.14)

HR, hazard ratio; CI, confidence interval; TZD, thiazolidinedione; PROactive, PROspective pioglitAzone Clinical Trial In macroVascular Events; IRIS, Insulin Re-
sistance Intervention after Stroke; DPP4, dipeptidyl peptidase-4; SAVOR-TIMI, Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabe-
tes Mellitus-Thrombolysis in Myocardial Infarction; EXAMINE, Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care; TECOS, Trial 
Evaluating Cardiovascular Outcomes with Sitagliptin; CARMELINA, Cardiovascular and Renal Microvascular Outcome Study With Linagliptin in Patients With 
Type 2 Diabetes Mellitus; SGLT2, sodium-glucose cotransporter-2; EMPA-REG OUTCOME, Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Di-
abetes; CANVAS, CANagliflozin CardioVascular Assessment Study; DECLARE-TIMI58, Dapagliflozin Effect on CardiovascuLAR Events-Thrombolysis in Myocar-
dial Infarction 58; GLP1, glucagon-like peptide-1; ELIXA, Evaluation of Lixisenatide in Acute Coronary Syndrome; EXSCEL, Exenatide Study of Cardiovascular 
Event Lowering; LEADER, Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; TIA, transient ischemic attack; SUSTAIN-6, 
Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide 6; HARMONY, albiglutide and cardiovascular outcomes in patients with 
type 2 diabetes and cardiovascular disease.
*IRIS study recruited participants with insulin resistance, but without type 2 diabetes mellitus.
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Figure 3. Effect of thiazolidinedione and novel antidiabetic agents on primary cardiovascular outcome and stroke. The hazard ratios (HRs) with 95% confi-
dence intervals (CIs) are provided for the active drug compared with the placebo. Primary cardiovascular outcomes are slightly different in each study. The 
overall effects were calculated using fixed effects models unless there was a significant heterogeneity among trials. Heterogeneity of the clinical trials was 
assessed using Cochran’s Q test and Higgins and Thompson’s I2 (P<0.05 or I2>50 were considered as indicative of significant heterogeneity). Analyses were 
performed using R version 3.5.1 (R Foundation for Statistical Computing). PROactive, PROspective pioglitAzone Clinical Trial In macroVascular Events; IRIS, In-
sulin Resistance Intervention after Stroke; MI, myocardial infarction; DPP4, dipeptidyl peptidase-4; SAVOR-TIMI, Saxagliptin Assessment of Vascular Outcomes 
Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial Infarction; MACE, major adverse cardiovascular event; CV, cardiovascular; EXAMINE, 
Examination of Cardiovascular Outcomes with Alogliptin versus Standard of Care; TECOS, Trial Evaluating Cardiovascular Outcomes with Sitagliptin; CARME-
LINA, Cardiovascular and Renal Microvascular Outcome Study With Linagliptin in Patients With Type 2 Diabetes Mellitus; SGLT2, sodium-glucose cotransport-
er-2; EMPA-REG OUTCOME, Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes; CANVAS, CANagliflozin CardioVascular Assessment 
Study; DECLARE-TIMI58, Dapagliflozin Effect on CardiovascuLAR Events-Thrombolysis in Myocardial Infarction 58; GLP1, glucagon-like peptide-1; ELIXA, 
Evaluation of Lixisenatide in Acute Coronary Syndrome; EXSCEL, Exenatide Study of Cardiovascular Event Lowering; LEADER, Liraglutide Effect and Action in 
Diabetes: Evaluation of Cardiovascular Outcome Results; SUSTAIN-6, Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide 6; 
HARMONY, albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease. *The parenthetical value is the upper bound-
ary of the one-sided repeated CI, at an a-level of 0.01; †IRIS study recruited participants with insulin resistance, but without type 2 diabetes mellitus.
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occurrence of stroke and myocardial infarction (event rate: 
9.0% in the pioglitazone group vs. 11.8% in the placebo group; 
HR, 0.76; 95% CI, 0.62 to 0.93) (Figure 3).26 However, the rate 
of stroke alone did not differ between the pioglitazone and 
placebo groups (HR, 0.82; 95% CI, 0.61 to 1.10) (Figure 3).

In a review of RCTs that compared TZDs and placebo for the 
secondary prevention of stroke and related vascular events in 
people who had experienced stroke or TIA, TZD reduced stroke 
recurrence (relative risk, 0.52; 95% CI, 0.34 to 0.80).27 Therefore, 
TZDs may reduce recurrent stroke and related vascular event risk 
both in patients with T2D and in those with insulin resistance. 

DPP4 inhibitors
DPP4 inhibitors are new antidiabetic agents for T2D28 that do 
not induce hypoglycemia or weight gain. Although these and 
GLP1 analogues have similar incretin-based activities, their ef-
fects on cardiovascular disease risk differ.29 Cardiovascular safety 
trials of DPP4 inhibitors such as saxagliptin,30 alogliptin,31 sita-
gliptin,32 and linagliptin33 showed neutral effects on the compos-
ite outcome of cardiovascular mortality, nonfatal myocardial in-
farction, and nonfatal stroke. Besides these safety trials,30-32 no 
study has focused on the effects of DPP4 inhibitors on the pri-
mary or secondary prevention of stroke alone. HRs for the out-
come of ischemic stroke, nonfatal stroke, and fatal or nonfatal 
stroke were 1.11 (95% CI, 0.88 to 1.39; P=0.38), 0.91 (95% CI, 
0.55 to 1.50; P=0.71), 0.97 (95% CI, 0.79 to 1.19; P=0.76), and 
1.02 (95% CI, 0.89 to 1.17; P=0.74) for saxagliptin, alogliptin, si-
tagliptin, and linagliptin, respectively (Figure 3). 

SGLT2 inhibitors 
SGLT2 inhibitors are emerging antidiabetic agents34 that show 
cardiovascular benefits. Empagliflozin resulted in a beneficial 
cardiovascular outcome in the Empagliflozin, Cardiovascular 
Outcomes, and Mortality in Type 2 Diabetes (EMPA-REG OUT-
COME) trial.35 The primary composite outcome, including death 
from cardiovascular causes, nonfatal myocardial infarction, or 
nonfatal stroke, occurred in 10.5% of patients in the empa-
gliflozin group and 12.1% of those in the placebo group (HR, 
0.86; 95.02% CI, 0.74 to 0.99). Cardiovascular risk was reduced 
as early as 6 months, suggesting the cardiovascular benefit as-
sociated with empagliflozin is unlikely to be induced by its glu-
cose-lowering properties. Furthermore, empagliflozin therapy 
was associated with an increased but nonsignificant risk of 
ischemic stroke (HR, 1.24; 95% CI, 0.92 to 1.67; P=0.16).

The CANagliflozin CardioVascular Assessment Study (CAN-
VAS) program showed that patients treated with canagliflozin 
had a lower risk of cardiovascular events than those who re-
ceived the placebo. However, canagliflozin showed no benefit 

in preventing stroke, although the point estimate was <1 for 
fatal or nonfatal stroke compared with the placebo (HR, 0.87; 
95% CI, 0.69 to 1.09).36

In the Dapagliflozin Effect on CardiovascuLAR Events-Throm-
bolysis in Myocardial Infarction 58 (DECLARE-TIMI58) study, 
40.6% of participants showed established atherosclerotic car-
diovascular disease and 59.4% had multiple cardiovascular risk 
factors. Dapagliflozin therapy was not superior in terms of the 
original primary cardiovascular outcome (HR, 0.93; 95% CI, 0.84 
to 1.03) but showed benefits in reducing the risk of cardiovas-
cular mortality or hospitalization for heart failure (HR, 0.83; 
95% CI, 0.73 to 0.95).37 The point estimates for ischemic stroke 
were similar in the dapagliflozin and placebo arms (HR, 1.01; 
95% CI, 0.84 to 1.21) (Figure 3).

A recent population-based observational study showed that 
SGLT2 inhibitors (dapagliflozin, empagliflozin, or canagliflozin) 
were associated with reduced cardiovascular mortality com-
pared to other glucose-lowering drugs (HR, 0.53; 95% CI, 0.40 
to 0.71; P<0.05).38 Furthermore, no difference in nonfatal 
stroke risk was observed between the groups treated with the 
SGLT2 inhibitor and placebo (HR, 0.86; 95% CI, 0.72 to 1.04). A 
meta-analysis of SGLT2 inhibitors and stroke risk also showed 
the neutral effects of SGLT2 inhibitors on stroke risk compared 
to that of the placebo.39 Evidence therefore suggests that 
SGLT2 inhibitor use is associated with reduced rates of cardio-
vascular events and mortality. However, in cardiovascular out-
come trials, SGLT2 inhibitors showed inconsistent or nonsignif-
icant effects on stroke risk.

GLP1 analogues 
Among five GLP1 analogues evaluated, liraglutide,40 semaglu-
tide,41 and albiglutide42 showed superiority in terms of compos-
ite cardiovascular outcome. In the Liraglutide Effect and Action 
in Diabetes: Evaluation of Cardiovascular Outcome Results 
(LEADER)40 trial, the HR for fatal or nonfatal stroke was 0.86 
(95% CI, 0.71 to 1.06; P=0.16) in the liraglutide-treated group. 
In the Trial to Evaluate Cardiovascular and Other Long-term 
Outcomes with Semaglutide (SUSTAIN)-6 trial,41 the HR for 
nonfatal stroke was 0.61 (95% CI, 0.38 to 0.99; P=0.04) in the 
semaglutide-treated group (Figure 3). The Harmony Outcomes 
study reported the superiority of albiglutide therapy in terms of 
the cardiovascular composite outcome (HR, 0.78; 95% CI, 0.68 
to 0.90) but not of stroke (HR, 0.86; 95% CI, 0.66 to 1.14).42 

In contrast, lixisenatide treatment (Evaluation of Lixisenatide 
in Acute Coronary Syndrome [ELIXA] study)43 and once-weekly 
exenatide treatment (Exenatide Study of Cardiovascular Event 
Lowering [EXSCEL] study)44 were not superior in terms of stroke 
prevention or primary cardiovascular outcome. Therefore, stud-
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ies of GLP1 analogues have produced inconsistent results for 
primary cardiovascular outcome, and their effects on stroke re-
main unclear. 

Effects of individual antidiabetic agents 
on stroke

TZDs
TZD is an agonist of peroxisome proliferator-activated 
receptor-γ (PPARγ), a nuclear receptor that regulates the tran-
scription of genes involved in glucose and lipid metabolism. 
TZD increases insulin sensitivity in muscle and adipose tissue. 
However, PPARγ is expressed ubiquitously in other tissues and 
TZD exerts various pleiotropic effects. In terms of cerebrovas-
cular diseases, TZD has both neuroprotective and antiathero-
sclerotic effects.

TZD improves the survival of neurons and glial cells, espe-
cially microglia, by reducing neuroinflammation.45,46 Accord-
ingly, TZD is protective against both ischemic and excitotoxic 
neuronal stress.47 In mouse models of oxygen/glucose depriva-
tion or glutamate/N-methyl-D-aspartate toxicity, PPARγ acti-
vation reduced neuronal death. However, mice lacking PPARγ 
in neurons were more susceptible to ischemic damage caused 
by focal cerebral ischemia.48 

TZD also prevents atherosclerosis progression. In vivo studies 
of atherosclerosis have shown the antiatherosclerotic effects 
of TZDs. Rosiglitazone reduced atherosclerosis development in 
LDL-receptor-deficient mice.49 Lobeglitazone, another TZD, re-
duced atheroma burden in a balloon-injury model using high-
fat and high-fructose diet-fed apolipoprotein E (apoE)-knock-
out mice.50 These antiatherosclerotic effects may be indepen-
dent of TZD’s metabolic effects. Rosiglitazone showed benefi-
cial effects on atherosclerosis independent of its effects on 
glucose and lipid levels in insulin-insufficient streptozotocin-
treated apoE-knockout mice.51 TZD can act on monocytes, en-
dothelial cells, and vascular smooth muscle cells, which are 
crucial in the pathogenesis of atherosclerosis. TZD reduces pro-
inflammatory cytokine production in monocytes, reduces adhe-
sion molecule and chemokine expression in endothelial cells, 
and suppresses vascular smooth muscle cell proliferation and 
migration.52 Collectively, these effects may contribute to TZD’s 
antiatherosclerotic properties.

There are few human mechanistic studies available, but TZD 
has also been shown to improve endothelial function in hu-
mans. In an RCT of patients with impaired glucose tolerance, 
endothelial function measured by brachial artery flow-mediat-
ed dilation improved after treatment with pioglitazone at 30 
mg/day for 12 weeks.53

DPP4 inhibitors 
DPP4 inhibitors increase circulating active GLP1 levels two-
fold, and potential antiatherosclerotic effects of DPP4 inhibi-
tors may occur through GLP1 action. In apoE-knockout mice 
fed a high-fat diet, sitagliptin treatment decreased atheroscle-
rotic plaque burden.54,55 However, in human studies, results 
were inconsistent. In two RCTs, alogliptin and sitagliptin thera-
py both attenuated the progression of carotid IMT, as measured 
via carotid ultrasonography.56,57 Conversely, another RCT of si-
tagliptin showed no effects on carotid IMT.58 In animal studies, 
DPP4 inhibitors also showed direct antistroke effects. In high-
fat diet-fed obese diabetic mice, linagliptin reduced brain in-
farct volume after middle cerebral artery occlusion, whereas 
glimepiride did not reduce brain ischemic lesions despite the 
greater attenuation of hyperglycemia.59 

 Several basic cell studies support the antiatherosclerotic ef-
fects of DPP4 inhibitors. Direct treatment of human vascular 
endothelial cells with sitagliptin decreased tumor necrosis 
factor-α-induced upregulation of adhesion molecules.60 An-
other in vitro study showed that sitagliptin decreased the pro-
duction of ROS and increased endothelial NO synthase expres-
sion in endothelial cells.61 Therefore, the antiatherosclerotic ef-
fects of DPP4 inhibitors may be explained by their anti-inflam-
matory and antioxidant properties.62

GLP1 is not the only substrate of DPP4. DPP4 inactivates 
various peptide hormones including glucose-dependent insuli-
notropic polypeptide, B-type natriuretic peptide, stromal cell-
derived factor-1α (SDF1α), and substance P.63 In a recent study 
of mice, linagliptin treatment increased active SDF1α levels in 
brain tissue, and blockade of the SDF1α–C-X-C chemokine re-
ceptor type 4 (CXCR4) pathway with a specific antagonist 
abolished the positive effects of linagliptin on functional out-
comes after stroke.64

SGLT2 inhibitors
SGLT2 inhibitors reduce hyperglycemia by bypassing the action 
of insulin and inducing glycosuria, and by reducing body weight 
and blood pressure.65 This unique mode of action modulates 
both hyperinsulinemia and conventional cardiovascular risk fac-
tors, including visceral obesity and albuminuria.66 We recently 
showed that the atheromatous plaque area in the aortic arch 
was significantly smaller after empagliflozin treatment than af-
ter sulfonylurea treatment in atherosclerosis-prone mice.67 An-
other study showed that empagliflozin treatment mitigated 
coronary artery thickening and remodeling and vascular dys-
function in db/db mice.68 Interestingly, SGLT2 inhibitors induce 
hyperketonemia, which may provide a “thrifty substrate” and 
lead to cardioprotective effects.69 Increased ketone levels may 
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also directly affect the risk of stroke. In rodent studies, 
β-hydroxybutyrate, a ketone body that is increased after SGLT2 
inhibitor treatment, could reduce brain infarct size by activating 
neuroprotective macrophages, and shift glucose metabolism to-
ward reducing oxidative stress.70,71 Therefore, the diverse meta-
bolic and hemodynamic effects of SGLT2 inhibitors appear to 
protect the cardiovascular system,72 although it is unclear 
whether this also applies to the cerebrovascular system.

However, in the EMPA-REG OUTCOME trial, empagliflozin 
treatment slightly increased stroke risk.35 Dehydration and/or 
increased hematocrit was a proposed mechanism for this find-
ing. However, studies of two other SGLT2 inhibitors reported 
inconsistent results: decreased stroke risk was observed in the 
canagliflozin group in the CANVAS program36 and a neutral ef-
fect was observed in the dapagliflozin group in the DECLARE-
TIMI58 study.37 So far, it is unclear whether this is a class effect 
or that of individual drugs. Therefore, mechanistic studies of 
SGLT inhibitors are warranted.

GLP1 analogues
The cardioprotective effects of GLP1 have been consistently re-
ported in preclinical studies, including endothelial function 
modulation via macrophage inflammatory response inhibi-
tion,73 increased endothelial NO production, reduced vascular 
adhesion molecule release,74 and suppressed vascular cell mi-
gration.75 In an atherosclerotic mouse model, a 4-week infu-
sion of GLP1(7–36) amide, an active form of GLP1, suppressed 
atherosclerosis development and macrophage infiltration in 
the aortic wall.76 This effect was blocked by co-infusion with 
exendin(9–39), a specific GLP1 receptor antagonist, suggesting 
that GLP1 analogues exert an antiatherosclerotic effect 
through the GLP1 canonical receptor.

The antiatherosclerotic or vasculoprotective effects of GLP1 
and GLP1 analogues have also been observed in rodent stroke 
models.77-79 After cerebral ischemia-reperfusion injury, intra-
peritoneal or intracerebroventricular administration of liraglu-
tide, a GLP1 analogue, consistently reduced the cerebral infarct 
volume in rats.78 These neuroprotective effects are induced by 
increasing antioxidant effects, upregulating vascular endothe-
lial growth factor production,78 and reducing proinflammatory 
cyclooxygenase-2 and prostaglandin E2 concentrations.79 These 
findings suggest that GLP1 analogues play a favorable role in 
the cardiovascular system through glucoregulatory, antiathero-
sclerotic, anti-inflammatory, and blood pressure-lowering ef-
fects, and by improving endothelial function.80

Conclusions 

So far, evidence suggests that optimal glucose control without 
inducing hypoglycemia has beneficial effects in the treatment 
of cardiovascular diseases including stroke. Accordingly, inter-
national guidelines for diabetes management recommend 
achieving a glycemic target goal to prevent or delay both mi-
cro- and macrovascular complications.81,82 

Several recent large-scale studies of new antidiabetic medi-
cations suggest that these agents have beneficial effects in 
preventing the development of composite cardiovascular out-
come and/or related mortality. However, their effects on stroke 
remain unclear. Empagliflozin treatment in the EMPA-REG 
OUTCOME trial showed a nonsignificant increase in stroke inci-
dence,35 although this contrasted with the effects of cana-
gliflozin in the CANVAS program (nonsignificant decrease)36 
and dapagliflozin in the DECLARE-TIMI58 study (neutral).37 

Although the semaglutide trial showed significant beneficial 
effects on nonfatal stroke, the cardiovascular outcome trials 
were underpowered for the specific stroke endpoints. More 
studies using ertugliflozin (SGLT2 inhibitor) and dulaglutide 
(once-weekly GLP1 analogue) are currently ongoing in the 
hope of improving vascular outcomes and total mortality in 
patients with diabetes at high stroke risk.83,84 Until the results 
of these studies are released, multifactorial interventions tar-
geting individual cerebrovascular risk factors are required to 
improve clinical outcomes in diabetes patients after a stroke or 
at high risk of stroke. More mechanistic studies focusing on 
the mechanisms underlying the effects of these agents on 
stroke risk are needed.
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